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We investigate the behavior of the order parameter describing the collective dynamics of a large

set of driven, globally coupled excitable units. We derive conditions on the parameters of the

system that allow to bound the degree of synchrony of its solutions. We describe a regime where

time dependent nonsynchronous dynamics occurs and, yet, the average activity displays

low dimensional, temporally complex behavior. VC 2011 American Institute of Physics.

[doi:10.1063/1.3574030]

The study of the collective dynamics of a noncompletely

synchronized extended system started with the work of

Kuramoto,1 who showed that a large set of sinusoidally

coupled phase oscillators could display a collective

state consisting of a mixture of synchronized and non-

synchronized units. The average dynamics of such state

would be a stationary rotation of a magnitude depending

on the strength of the coupling between the units and the

dispersion of their individual frequencies. Recently, Ott

and Antonsen2,3 found that the model by Kuramoto

presents an invariant manifold, i.e., a set of states for

which the macroscopic dynamics becomes low dimen-

sional. This strategy was later applied to solve closely

related problems, as the dynamics of a set of periodically

forced coupled oscillators.4 In this work, we investigate

the behavior of an order parameter that describes the

collective dynamics of a large set of driven, globally excit-

able units. We find that low dimensional and yet complex

dynamics can be found in the average activity of the

array, in a regime presenting a time dependent degree of

synchrony.

I. INTRODUCTION

The study of the generic features presented by a large

number of coupled oscillators has a long history.5 In part,

this is due to the wide range of areas where this problem

emerges. Kuramoto made a seminal contribution to the field

by introducing a mathematical model that allowed some

analytic treatment. The dynamics of each oscillator was

described in terms of its phase, and the coupling between the

different oscillators was assumed to be sinusoidal, yielding a

simplification of the analysis of the model. By introducing a

mean field function, he obtained an indicator of the coher-

ence of the units. He found that the oscillators are forced by

the mean field and, depending on their parameters, they can

synchronize with it. Recently, Ott and Antonsen2,3 found

that the model by Kuramoto presents an invariant manifold,

i.e., a set of states, for which the macroscopic dynamics

becomes low dimensional.

In this work, we are interested in exploring the dynamics

of a forced set of globally coupled excitable systems. The

dynamics of each unit, before coupling, is ruled by

_h ¼ x� c sin ðhÞ: (1)

If x=c < 1, the system has two fixed points, one stable and

the other unstable. The separation between these fixed

points depends on the x=c ratio. The qualitative behavior

of this system is shown in Fig. 1, where we display the

response of the system to different initial conditions. If

these are close to the quiescent state, the system rapidly

decays to the stable fixed point. For initial conditions above

some threshold, the response of the system includes a large

excursion in the phase space before decaying to the stable

fixed point.

In our study, the forcing units will be represented mathe-

matically by phase oscillators. We assume that there is a

global coupling between all driven excitable units, a global

coupling between all forcing units, and a directed coupling

from the driving units to the network of excitable, driven

units. Following Ott and Antonsen, we derive equations

describing the average dynamics of the system under study

in a low dimensional invariant manifold. We will show that

low dimensional and yet non trivial dynamics is possible at

the macroscopic level. We identify regions of the parameter

space for which the dynamics of the order parameter is

unbounded, therefore yielding low dimensional, nontrivial

dynamics. We support our conclusions with numerical simu-

lations of the extended system.

II. THE MODEL

Our model consists of two sets of phase oscillators. Set

1 refers to the driving set, while set 2 refers to the driven set.

We use Greek letters to indicate population number and

Latin letters to index the elements within a population. Using

this notation, we have the full extended model:

_h
r
i ¼ xr

i � cr
i sin ðhr

i Þ þ
X2

r0¼1

Krr0

Nr0

XNr0

j¼1

sin ðhr0

j � hr
i Þ; (2)
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where, for each population, the natural frequency of the ith
oscillator is denoted by xr

i . The parameter ruling the excita-

ble nature of each unit is cr
i , the number of oscillators in the

population is given by Nr, and Krr0 stands for the connectiv-

ity matrix.

In the limit Nr !1, these populations can be described

in terms of density probability functions f rðh;x; tÞ, with

r ¼ 1; 2. The evolution of f r is given by the continuity

equation,

@f r

@t
þ @

@h
ðf rvrÞ ¼ 0; (3)

where the velocity v is given by:

vrðhr;x; tÞ ¼ xr � cr sin ðhrÞ þ
X2

r0¼1

Krr0

�
ð1
�1

ð2p

0

sin ðh0 � hr0 Þf r0 ðh0;x; tÞdh0dx: (4)

We have defined f r in such a way that the fraction of oscilla-

tors with phases between h and hþ dh and natural frequen-

cies between x and xþ dx is given by f rðh;x; tÞdhdx.

Therefore, in order to close the system, we need that the fol-

lowing equations are satisfied:Ð1
�1
Ð 2p

0
f rðh;x; tÞ dhdx ¼ 1Ð 2p

0
f rðh;x; tÞ dh ¼ grðxÞ

( )
: (5)

As suggested by Kuramoto, we define the system complex

order parameter as

rrðtÞ ¼
X2

r0¼1

Krr0z
r0 ; (6)

where zr is the complex average of the oscillators in r th

population given by the following equation:

zr ¼
ð1
�1

ð2p

0

eihf rðh;x; tÞdhdx: (7)

With these definitions, the velocity (4) simplifies to

vrðhr;x; tÞ ¼ xr þ cr

2i
ðeihr � e�ihrÞ þ 1

2i
ðe�ihr

rr � eihr

rr� Þ;

(8)

where the super index * denotes the complex conjugation.

We are interested in the case of a population of phase oscilla-

tors driving a population of excitable units. We accomplish

this by making cr¼1 ¼ 0 and K12¼ 0. In this way, we reduce

this population to one behaving as in the case described by

Kuramoto. We simplify the notation and leave cr¼2 ¼ c as a

parameter of the model.

It is a conventional strategy to address this problem by

expanding f r in a Fourier series in h,

f rðhr;x; tÞ ¼ gðxÞ
2p

1þ
X1
n¼1

f r
n ðx; tÞeinhr þ cc

" #
; (9)

with cc denoting complex conjugation. Replacing (9) and (8)

into (3), one obtains, in principle, an infinite dimensional

system of equations for f r
n .

An important breakthrough in the analysis of this prob-

lem was reported by Antonsen and Ott,2 who noticed that the

following ansatz f r
n ðx; tÞ ¼ ðarðx; tÞÞn would satisfy all the

amplitude equations as long as certain equations are satisfied

by ar. For our problem, these read as follows:

_a1 ¼ �ixa1 þ
K11

2
ða1� j a1 j2 a1Þ

_a2 ¼ �ixa2 þ
c
2
ð1� a2

2Þ þ
K22

2
ða2� j a2 j2 a2Þ þ

K21

2
ða1 � a�1a

2
2Þ

8>><
>>:

9>>=
>>;: (10)

FIG. 1. (Color online) (a) Schematics of a neural oscillator. The circle on the top represents an excitatory subpopulation of neurons (Esp), while the rectangle

represents the inhibitory one (Isp). (b) Mathematical representation of the neural oscillator by a phase oscillator. The main dynamical features of the neural os-

cillator close to a SNILC<< bifurcation are captured by this simple model. (c) Qualitative behavior of the phase oscillator model. For initial conditions below

the threshold (indicated by the dashed line), the solution is a rapid decay to the stable fixed point, while for initial conditions above this threshold, the system

performs a large excursion in phase space. This means that small perturbations from the stable fixed point will result in rapid decay to equilibrium. For pertur-

bations that are large enough, the system response is qualitatively different. Adapted from Ref. 12.
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By further assuming that grðxÞ is a Lorentzian,

grðxÞ ¼ Dr

p ðx� xr
0Þ

2 þ ðDrÞ2
h i ; (11)

and that arðx; tÞ satisfies certain analicity conditions in the

complex x-plane, Ott and Antonsen2 evaluated Eq. (10) by

contour integration. By multiplying both sides of (10) by

grðxÞ and using the residue theorem, we have the following

equations for the evolution of arðxr
0 � iDr; tÞ:

a1ðx1
0 � iD1; tÞ ¼ �iðx1

0 � iD1Þa1 þ
K11

2
ða1 � a1j j2a1Þ

a2ðx2
0 � iD2; tÞ ¼ �iðx2

0 � iD2Þa2 þ
c
2
ð1� a2

2Þ þ
K22

2
ða2 � a2

2a2Þ þ
K21

2
ða1 � a�1a

2
2Þ

8>><
>>:

9>>=
>>;; (12)

where the arguments of arðxr
0 � iDr; tÞ were dropped for

notational simplicity in the right-hand sides. By using the

Fourier expansion (9) of the distribution function and the

ansatz in (7), we have the relation between the distribution

function and the order parameters for each set of units:

zrðtÞ ¼
ð1
�1

ð2p

0

eihf rðh;x; tÞ dhdx

¼
ð1
�1

a�rgðxÞ dx ¼ a�rðxr
0 � iDr; tÞ: (13)

We can write the order parameter in its Euler form as

zrðtÞ ¼ qrðtÞeihrðtÞ. The average phase position of the oscilla-

tors is given by hrðtÞ while the modulus qrðtÞ measures how

peaked its distribution is.

III. MAIN RESULTS

The driving population ( r ¼ 1 ), as discussed by Kura-

moto, presents a collective state, which can be described by

an order parameter a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D1=K11

q
¼ q1, and a phase

/1 rotating at x1
0. The second population, on the other hand,

can be described in terms of the modulus and phase of a2,

thus yielding a three-dimensional system of differential

equations:

_q2 ¼ �D2
0q2 þ

c
2

cosð/2Þð1� q2
2Þ þ

K22

2
q2ð1� q2

2Þ þ
K21

2
q1cosð/1 � /2Þð1� q2

2Þ

_/2 ¼ �x2
0 �

c
2

sinð/2Þ q2 þ
1

q2

� �
þ K21

q1

q2

sinð/1 � /2Þð1þ q2
2Þ

_/1 ¼ �x1
0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; (14)

where Di
0 and Xi

0 are the width and center of the assumed

Lorentzian distribution of frequencies for the rth population,

respectively. In the limit D2
0 ! 0, q ¼ 1 is the solution, and

therefore the system presents a dynamics constrained to a

torus. Notice that for D2
0 > 0, the system is fully three-

dimensional, and in principle, the average activity of the

driven population can present low dimensional chaos. It is

worth remarking that the low dimensional chaos in the aver-

age activity of the driven population cannot be found without

time dependent asynchrony.

There are two different regions of the parameter space

where the dynamics is qualitatively different. Notice that it

is always possible to find values of q2 such that _q2 jq2
< 0, as

long as

f ðq2Þ ¼
q2

1� q2
2

>
K22

2D2
0

q2 þ
cþ K21q1

2D2
0

¼ f2ðq2Þ: (15)

It is also possible to look for values of q2 such that

_q2 jq2
> 0. The condition that such values need to satisfy can

be found to be

f ðq2Þ ¼
q2

1� q2
2

<
K22

2D2
0

q2 �
cþ K21q1

2D2
0

¼ f3ðq2Þ: (16)

Whenever both conditions can be satisfied simultaneously,

the order parameter varies within boundaries: one can define

a q ¼ qmax (qmin) as the lower (upper) boundary of the values

over which _q < 0 (>0). In this way, although the driven pop-

ulation is not fully synchronized, the order parameter is

bounded from below. In Fig. 2, we use points to show the

region of the parameter space a ¼ K22

�
2D2

0,

b ¼ cþ K21q1

�
2D2

0 where the system’s order parameter has

bounded dynamics

In Fig. 3, we display f ðqÞ, f2ðqÞ, and f3ðqÞ for the case

where the order parameter is bounded and unbounded from

below. If the slope of the straight lines (f2,3) is smaller than a

threshold value, there is no lower boundary for the order pa-

rameter. Since the slope is proportional to the coupling

within the driven population, we infer that there is a mini-

mum value of the global coupling such that a lower bound

for the level of synchrony exists.
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The order parameter fails to have a lower boundary if,

for a given level of global coupling K22, the system presents

large values of c, K21, or q1. For each set of values used in

Fig. 3(a), we performed a simulation with 100 excitable units

forced by a set of other 100 phase oscillators. For each simu-

lation, we computed hcos ðh2
i Þi and hsin ðh2

i Þi, where h i

stands for the average over the population. In Fig. 3(b), we

show the results for the case of order parameter bounded

(unbounded) from below. The time evolution of the order pa-

rameters corresponding to each case are displayed in Fig.

3(c) right and left, respectively. Notice that for the size of

the accessible band of q2 values to vanish, b has to go to

zero. That requires both that c and the product K21q1 tend to

zero, i.e., recovering the configuration studied by Kuramoto.

In Fig. 4, we display the average activity of 100 oscilla-

tors6 for parameter values such that the averaged system

presents chaotic dynamics, with order parameter unbounded

from below (a). Notice that a fluctuating order parameter is

necessary for the dynamics to depart from simple quasiperi-

odic behavior. In other words, chaotic average dynamics

requires time dependent levels of synchronization. If the

attractor of the extended system is chaotic, we expect a sin-

gle trajectory to coexist with infinitely many unstable peri-

odic orbits. The method of close returns7 allows to find

pieces of the data set that resemble periodic orbits. We look

for a time interval for which the system is close to an unsta-

ble periodic orbit (b) such that the order parameter decreases

to almost zero. We compute a histogram counting how many

oscillators present a phase within ðh; hþ 2p=100Þ at each

time t (c). Notice that when the order parameter approaches

FIG. 3. (Color online) Boundaries for the order parameter of the driven pop-

ulation of units. In the left panels, the parameters are chosen so that there is

a lower boundary for the order parameter of the extended system, which,

therefore, preserves a degree of synchrony during its evolution. In the right

panels, the parameters are chosen so that there is only an upper boundary for

the order parameter. The conditions in the text [Eqs. (4) and (5)] are dis-

played geometrically in (a). We used continuous line for f and dashed line

for f2 and f3. Numerical simulations of the extended system, with 100 phase

oscillators driving 100 excitable units are performed. The average values

over the populations hcos ðhiÞi and hsin ðhiÞi are displayed in (b), while the

time evolution of the order parameter is shown, for each choice of parame-

ters, in the left and right panels of (c). In these simulations, K21¼ 6, c ¼ 4,

x1
0 ¼ �10, and x2

0 ¼ 3:8. The parameter K22¼ 20 for the simulations on the

left, while K22¼ 8 for the simulations on the right.

FIG. 4. (Color online) For the parameter values such that the averaged sys-

tem displays chaotic dynamics, a simulation with one hundred oscillators. In

(a), cos ðhiÞh i and sin ðhiÞh i are displayed. A close return analysis allows to

reconstruct unstable periodic orbits coexisting with the attractor. One of

such orbits is displayed in (b). The order parameter approaches zero when

this orbit is visited. In (c), we display the histograms for different values of

t, where the number of excitable driven units with phase between

ðh; hþ 2p=100Þ is color coded. For the periodic orbit to achieve its topologi-

cal shape, the system has to temporarily lose synchrony. In these simula-

tions, K11 ¼ 5.5, c ¼ 6:83, x1
0 ¼ 10, x2

0 ¼ 5:8, K22 ¼ 10, and K21 ¼ 5.

FIG. 2. (Color online) The regions of the parameter space where the sys-

tem presents an order parameter bounded from below (dots). The parame-

ters are a ¼ K22

�
2D2

0 and b ¼ cþ K21q1ð Þ
�

2D2
0. In our simulations,

D2
0 ¼ 1. The order parameter of the driving population was computed as

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D1

0=K11

q
, with D1

0 ¼ 0:01 and K11¼ 5.5.
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zero, the oscillators disperse: different oscillators are found

in different phases. The system, therefore, behaves with a

high degree of synchrony for some time, desynchronizes for

a while, in such a way that the average activity of the popula-

tion displays very well structured chaotic dynamics.

Low dimensional dynamics could emerge from an

extended system as the result of a core of units locked sub-

harmonically to a forcing, coexisting with asynchronous

units whose average dynamics does not contribute to the av-

erage activity of the system. In Fig. 5, we show two period 3

solutions of Eq. (14), and its comparison to the extended sys-

tem of Eq. (2). The parameters were chosen such that the sol-

utions present the same topological features, but from

regions of the parameter space that lead to unbounded and

bounded dynamics, respectively. In this way, similar average

dynamics was obtained through qualitatively different mech-

anisms. This alternative would not have existed for a chaotic

solution that requires three dimensions and therefore time

dependent asynchrony, as we have discussed.

It is worth to mention that the parameters of the system

were chosen using the Arnold tongues diagram of system 14,

i.e., the N !1 limit. The agreement between the numerical

simulations and the N !1 theory is remarkable, particularly

for the parameters where the dynamics is unbounded. For these

cases, N as small as hundred units allowed us to obtain a good

correspondence between the simulations of the extended system

and the low dimensional system ruling the average activity.

IV. DISCUSSION AND CONCLUSIONS

How to obtain a macroscopic description of the dynam-

ics presented by coupled nonlinear units is a problem with a

long history in nonlinear dynamics. The seminal work of

Kuramoto1 on globally coupled oscillators opened a fruitful

line of research. Recent advances2–4 allowed to explore

closely related problems.

In this work, we studied the dynamics of a driven set of

globally coupled excitable units. There are many systems

that can be quoted as a motivation for this study. Coupled

populations of excitatory and inhibitory neurons, for exam-

ple, constitute an array that presents excitable dynamics8 for

wide regions of its parameter space. Recently, arrays of this

kind subjected to periodic forcing were conjectured to be

related to the origin of physiological motor instructions used

in birdsong production.9

The qualitatively different solutions that a low dimen-

sional nonlinear system might present for different parameters

has been proposed as a mechanism for obtaining nontrivial,

yet robust motor patterns in biological systems.9–12. These sol-

utions would allow to having both robustness due to the low

dimensionality as well as diversity. The possibility of reducing

the dynamics of large sets of coupled oscillators or excitable

units to an invariant manifold opens a new perspective to the

study of those problems.

In our system, we show that nontrivial, low dimensional

dynamics can be obtained as the average of forced, globally

coupled excitable units. This behavior occurs without the

need of a core of synchronized units, being the low dimen-

sional dynamics the emergent of the average activity. More-

over, in the studied problem, some solutions cannot occur

without time dependent levels of asynchrony; chaotic solu-

tions are among them. This mechanism for generating cha-

otic dynamics is different from the one that involves the

nonlinear interaction of a low number of spatial modes13 and

constitutes an example of the rich dynamics that emerges

from a large set of interacting nonlinear units.
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FIG. 5. (Color online) Top panels: (a) Numerical simulation of Eq. (14)

showing a period 3 solution. The parameter values are q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 0:01=8ð Þ

p
(thus, K11¼ 8 and D1 ¼ 0:01), x1

0 ¼ 5, x2 ¼ 2:9, c2 ¼ 2:96, D2 ¼ 1,

K21¼ 2, and K22¼ 8. These parameters correspond to the unbounded region

in Fig. 1. (b) Numerical simulation of the extended system 2. We used

N1¼ 100 oscillators to drive N2¼ 3000 excitable oscillators. The frequencies

xr
i were taken randomly from a Lorentzian distribution with mean x1 ¼ 5

(x2 ¼ 2:9) and deviation D1 ¼ 0:01 (D2 ¼ 1). The rest of the parameters are

the same as in (a). (c) The histogram of population 2 for the temporal interval

depicted by s. The number of units with phase between h; hþ 2p=500ð Þð Þ is

color coded. Bottom panels: (a) Numerical simulation of Eq. (14) showing a

period 3 solution. The parameter values of the forcing are x1
0 ¼ 6:4 and

K21¼ 2.6. We chose K22¼ 20 in order to be in the bounded region of Fig. 2.

The rest of the parameters were left unchanged. The period 3 solution has the

same topological features as in (a) top panel. In (b), we show the numerical

simulation of the extended system. The parameters were chosen to agree with

the previous simulation in the same way as in (b) top panel. The histogram

evolution for the interval s is shown in (c). The oscillators are in a highly syn-

chronous state; however, the average behavior is similar to the top case. Thus,

we show low dimensional nontrivial behavior emerging through qualitatively

different mechanisms.
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