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Birdsong is a complex phenomenon, generated by a nonlinear vocal device capable of displaying complex
solutions even under simple physiological motor commands. Among the peripheral physical mechanisms
responsible for the generation of complex sounds in songbirds, the understanding of the dynamics emerging
from the interaction between the sound source and the upper vocal tract remains most elusive. In this work we
study a highly dissipative limit of a simple sound source model interacting with a tract, mathematically
described in terms of a delay differential equation. We explore the system numerically and, by means of
reducing the problem to a phase equation, we are capable of studying its periodic solutions. Close in parameter
space to the point where the resonances of the tract match the frequencies of the uncoupled source solutions,
we find coexistence of periodic limit cycles. This hysteresis phenomenon allows us to interpret recently
reported features found in the vocalization of some songbirds, in particular, “frequency jumps.”
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I. INTRODUCTION

In the last years, birdsong has become a favorite animal
model in which to explore the mechanisms involved in the
learning of a complex behavior �1�. The reason is that almost
forty percent of the known species of birds share with hu-
mans, and a few other examples in the animal kingdom, the
need for a tutor in order to achieve the proper vocalizations
of the adult �2�. This explains the particular interest that the
neuroscience community has for this model.

In fact, much of the study of the animal behaviors that
enhance the survival and reproduction of an individual has
focused on their neural control. The generation of a behavior,
however, involves strong interactions between the nervous
system and a peripheral biomechanical system. This interac-
tion is specially important in birdsong, where neural instruc-
tions drive a highly nonlinear physical system, the syrinx,
capable of generating acoustic signals that range from simple
whistles to complex sounds �3,4�. For this reason, it is im-
portant to understand the extent of the complexity that the
syrinx is capable of, when driven by simple motor gestures.
It is possible to obtain complex acoustic features with simple
neural activity.

Despite the unique morphology of the avian vocal organ,
the principal physical mechanism of sound generation shows
striking parallels to that in the mammalian larynx �5,6�. More
precisely, the basic mechanism of birdsong production re-
sembles the generation of voiced sounds by humans: the ex-
piratory airflow can drive sustained oscillations of the mem-
branes �vocal folds in humans and labia in birds�. The
modulations produced in the airflow due to these tissue os-
cillations are responsible for the generation of sound. Be-
tween this sound source and the environment stands a tract.
In humans, the dynamics of the oscillating vocal fold can be
understood without taking into consideration the effect of the
vocal tract �except in some exceptional situations �7,8��,
which basically operates as a filter which enhances some
frequencies of the sound signal generated by the source, and
attenuates others. Yet, the air pressure between the labia,
which provides the driving force responsible for their oscil-

latory behavior, depends on the pressure at the input of the
vocal tract. For this reason, the filter, which modifies the
pressure at the input of the tract, can in principle affect the
labial motion. These source-tract interactions were shown to
be capable of leading to sound instabilities �9�.

In a model of a vocal organ capable of accounting for the
generation of complex sounds, it is difficult to separate the
complexity associated with the fact that the oscillating labia
can display complex modal motion, from the phenomena
strictly associated with the acoustic coupling between the
sound sources and the tract �9�. For example, one of the most
popular models used to represent the transfer of energy of an
airflow to oscillatory tissue in voicing devices is known as
the two-mass model. It was first introduced by Ishizaka and
Flanagan �10� to account for the generation of voiced sounds
by humans. It was thoroughly studied by a number of re-
searchers �11,12�, and �modulo small adaptations� assumes
that the oscillating tissue can be described in terms of two
masses. This model for the sound source was used to inspect
the dynamics of a sound source, coupled to a tract �9�. This
work shows that, in this model, complex behavior can
emerge. Since the motion of an oscillating labium is de-
scribed by a fourth-order dynamical system �position and
velocity of the masses used to describe each part of the la-
bia�, complex dynamics might arise even if the coupling with
the tract is neglected.

For this reason, we present a model which diminishes the
complexity of the sound source dynamics to a minimum:
without coupling, our model will only be capable of display-
ing periodic solutions. In this way, the phenomena associated
with the sound source coupling will be easily identified.
Moreover, working in a highly dissipative limit, we are ca-
pable of generating analytical expressions for the periodicity
of the solutions found, which allows us to explore systemati-
cally the behavior of our system as different parameters are
changed. In particular, we focus on the phenomenon known
as “frequency jumps.” In this phenomenon, smooth changes
in the system’s parameters lead to discontinuities of the
sound’s fundamental frequency. This phenomenon is de-
scribed by Zollinger et al. �13� as one of the three signatures
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of nonlinearity in the sound source and reported experimen-
tally in mockingbirds.

This work is organized as follows. In Sec. II, our model
and a numerical exploration of its solutions are described.
Section III deals with an analytical study of the model, re-
viewing a technique reported by Erneux et al. �14�. In Sec.
IV we deal with the generation of synthetic sounds with our
model of the avian vocal apparatus. Finally, we present our
conclusions in Sec. V.

II. MODEL

Our model follows Titze’s flapping model of fold oscilla-
tions during phonation �15�. The flapping model represents a
good compromise between a realistic description and com-
plexity, keeping the essentials of vocal fold physics. Without
coupling, this model is mathematically described by a
second-order dynamical equation. In order to study the
mechanisms behind oscillations in the vocal folds, Titze pro-
posed a simple model in which sustained oscillations arise
whenever the energy transfer from the airflow to the folds
overcomes the dissipative losses. This transfer can be
achieved if the driving force exerted by the glottal pressure is
larger when the folds are opening than when the folds are
approaching each other. Titze observed that this requirement
is met when the vocal folds assume an oscillation character-
ized by a “flapping” motion. This dynamics requires two
active modes for each tissue: one consisting of a lateral mo-
tion and a second one which is an upward propagating wave.
Assuming this distribution of active modes in the labia, one
can write for x the midpoint position of a labium

ẋ = y

ẏ = − kx − �y − x2y + Pi + �Psub − Pi�f�x,y� ,

where, in the second equation, the first term describes the
elastic restitution of the labium, the second term represents
dissipation, the third term a nonlinear saturation that bounds
the labial motion, and finally, the last two terms account for
the average interglottal pressure. This average pressure is
described in terms of the subsyringeal pressure �Psub�, and
the pressure of the tract �Pi�. Assuming a simple geometry
for the labial motion, Titze wrote f�x ,y� as a polynomial
ratio. Let us explore in more detail the physical mechanisms
at play in this model. To derive this result �15� the labia are
assumed to support both lateral oscillations and an upward
propagating surface wave. Hence, the opposing labia have a
convergent profile when they move away from each other
and a divergent profile when they move toward each other. In
this way, a higher pressure is established between the labia
during the opening phase, and an overall gain in energy dur-
ing each cycle of oscillation. Physically what occurs is that
while presenting a convergent profile, the average pressure
between the labia is closer to the bronchial pressure, whereas
interlabial pressure is closer to atmospheric pressure for a
divergent profile. This results in a force in the same direction
as the velocity of displacement of the labia, which might
overcome the dissipation for high-enough values of the sub-
syringeal pressure. This qualitative argument lead us to ap-

proximate f�x ,y� by a term proportional to the velocity, i.e.,
f�x ,y�=y /vchar, with vchar a characteristic velocity �16�. In
this way, the interglottal pressure is capable of compensating
the dissipation in the system, and transferring energy from
the airflow into the labia. In a previous work �16�, we ex-
plored dynamically the simplified model and studied its so-
lutions as a function of the parameters �Psub ,k�. The system
presented the same qualitative behavior as the one reported
in �17�, where no simplifications were assumed beyond those
presented in �15�. Moreover, the simplified model was used
to synthesize the song of the Zonotrichia capensis in �16�,
and direct experimental support for it was reported in �19�. In
this work ��19��, the simplified model was driven with time-
dependent parameters k�t� and Psub�t� whose time depen-
dences were proportional to the recordings of ventral muscle
activities and air sac pressure. Songs recorded simulta-
neously with the physiological activity were compared with
the synthetic songs generated by the simplified model. The
model was capable of generating recognizable songs.

Introducing that simple driving term f�x ,y�=y /vchar, the
system presents a fixed point at �x ,y�= �0,0�, and for certain
values of the parameters a Hopf bifurcation will occur, by
means of which the solutions become oscillatory �see Fig. 1
caption�. After a change of scales, t→ t /� and y→�y, we
write

ẋ = y �1�

ẏ = − k�2x + ��Psub − ��y − �x2y + �Pi�� − y� ,

where vchar=1 for the sake of simplicity. Beyond the Hopf
bifurcation, the labia oscillate around their midpoint position.
If Pi�0, the dynamics of the source will be independent of
the tract, and will consist only of these oscillations.

Additional nonlinear phenomena will occur when the in-
teraction with the vocal tract is introduced. If the system
interacts with a tube of length L, the suprasyringeal pressure
Pi will be affected due to the feedback. This feedback will
depend on the length of the tube and previous values of Pi
itself. We compute the pressure at the input of the tube at
time t as the result of two contributions: the one due to the
glottal flow fluctuations being injected in the tube, and the
other one corresponding to the backward propagating sound
wave after the partial reflection at the distant end of the tube.
The fluctuating glottal flow Ug induces velocity fluctuations
in the air at the entrance of the tube v=Ug /Ai, where Ai is the
tube’s area �18�. These velocity fluctuations contribute to
pressure fluctuations P+ which can be written as P+=�0cv
= ��0c /Ai�Ug �20�, where �0 is the unperturbed air density
and c stands for the sound speed. The average speed of the
air through the glottis Vm can be estimated using a phenom-
enologically corrected version of Bernoulli’s law as Vm

=�2Psub

kt�0
�15�, where kt stands for the transglottal pressure

coefficient. Since the glottal area am is proportional to the
midpoint departure of the labia x, approximating the flow by
Ug=Vmam, we can write the contribution of the pressure at
the input of the tract due to flow fluctuations as P+
=��Psubx, where � is inversely proportional to the area of
the tube. If the tract is assumed to consist of a tube open at
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the end opposed to the sound source, and the reflection co-
efficient is r �21�, the total pressure at the input of the tract Pi
can be written as

Pi�t� = ��Psubx − rPi�t − �� , �2�

where �= 2L
c is the time it takes the sound wave to propagate

to the far end of the tract and back at speed c. Numerical
integration of the system with feedback �2� shows a variety
of dynamical solutions. In particular, coexistence of periodic
solutions is possible.

Recent work has shown that song is accompanied by a
motor pattern responsible for the adjustment of the dimen-
sions of the vocal tract based on the fundamental frequency
generated by the syrinx �1,4,22�. For this reason, we re-
strained our numerical explorations of the model to those

parameters describing the tube in a way that �= 2L
c was of the

same order of magnitude of the period of the solutions of the
uncoupled syrinx T0. A first inspection of the solutions was
conducted by means of numerically integrating the model for
�� �0, 5

2T0�. For each �, system �1� with delayed feedback
�2� was numerically integrated with different initial condi-
tions and, after a transient, intersected with a Poincaré sec-
tion in the �x ,y� phase space. The intersection points xp of
the trajectories with the Poincaré section are plotted against �
in Fig. 1�a�. A particularly interesting scenario occurs when �
is close to the period of the unperturbed limit cycle: coexist-
ence of periodic solutions. This hysteresis between limit
cycles is displayed in Fig. 1�b�, which is an enlargement of
the section between arrows of Fig. 1�a�. In Fig. 1�c�, the
periods of numerically computed solutions in the detailed
region are plotted. In fact, coexistence of periodic solutions
is one of the key features displayed by limit cycle oscillators
subject to delayed feedback �14,23�. Also, it is the one non-
linear feature of our model on which we wish to focus. For
that reason, we propose a simplified system that captures the
dynamical mechanism and by yet can be treated analytically.

Notice that before coupling the source to the tube, the
dynamics of the labia are driven by

ẋ = y �3�

ẏ = − k�2x + ��Psub − ��y − �x2y ,

which is the standard form of

u̇ = v − F�u� = v − �u3/3 + ��Psub − ��u �4�

v̇ = − k�2u ,

i.e., these two systems of equations are equivalent after writ-
ing u=x and v= ẋ−��Psub−��x+�x3 /3 �16�. The system of
Eqs. �4� describes the dynamics of the Van der Pol oscillator;
a paradigmatic model for relaxation oscillations. The cubic
nullcline v−F�u�=v−�u3 /3+��Psub−��u=0 is the key to
understand the behavior of the system. Any trajectory in the
�u ,v� phase space rapidly zaps toward the nullcline, slowly
crawls along it until an extremum is reached. After reaching
this point, it zaps over the other branch of the nullcline. This
is followed by another slow crawl until the second extremum
is found where a new jumping off takes place, and the dy-
namics continues to repeat itself periodically. �24�.

An equivalent dynamics takes place if the nullcline is ap-
proximated by straight lines,

f�u� = �u + 2�Psub − � x � − �Psub − �

− u �u� � �Psub − �

u − 2�Psub − � x 	 �Psub − � .
	

The relaxation oscillator presenting this nullcline, and the
same time scale as our model obeys the following system of
equations:

ẋ = y �5�

ẏ = − k�2x + �Sg
��Psub − �� − x2��y ,

FIG. 1. �Color online� �a� Values of x�t� at the intersection of
trajectories in phase space �x ,y� of system �1� with feedback �2�
with the line y=5000x. �b� A detailed look at the section between
the arrows suggests coexistence of solutions with different periods.
�c� Measuring the periods T of trajectories in the detailed region
for different initial conditions corroborates coexistence. For the
parameters used for numerical integration, �� ,� , Psub ,k�
= �7000
 ,0.1,0.3,1.0�, and Psub=0.3, the limit cycle found when
Pi=0 has period T0=1 /3500s. When looking for coexistence of
periodic solutions, Psub=0.3 and feedback coefficients �� ,r�
= �1.0,0.4�.
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where Sg�z� stands for sign of z :Sg�z�=1 if z�0, Sg�z�
=−1 otherwise. Using this model instead of Eq. �3� allows us
to solve analytical expressions for the crawling along the
nullcline, which will be advantageous in order to find ana-
lytical conditions for the phenomena we are interested in.
Yet, it is worth pointing out that a nonlinear dissipation being
turned on whenever the departure of x from equilibrium ex-
ceeds a threshold �as it is the case in the model described by
Eq. �5�� is likely to be more realistic than the continuous
nonlinear dissipation represented by the term x2y in Eq. �3�.

For these reasons, we are going to concentrate in the
study of the dynamics of a source �whose autonomous dy-
namics is ruled by Eq. �5�� coupled to a simple tract, i.e., in
the system ruled by

ẍ + �Sg�x2 − �Psub − ���ẋ + x = �1 − ẋ/vchar��x − rx�t − ���� ,

�6�

where �2=1 /k and �=1 /� �25�.

III. ANALYSIS OF THE MODEL

The advantage of working with Eq. �6� is that the free
oscillator admits a simple solution: the evolution along the
straight branches of the nullcline can be expressed analyti-
cally, and therefore the period of its periodic solution can be
easily approximated: T0�2� ln�3�. The parameter � scales
the delay time of the feedback �, as we wish to study how
period changes with delays of the same order of magnitude.
A technique used in �26� can be adapted to obtain a phase
DDE, which will be analyzed in terms of the delay � in the
high dissipation, weak feedback case.

As mentioned in the previous section, Eq. �6� stands for a
piecewise linear relaxation oscillator, subject to delayed
feedback. The nature of its periodic solutions can be in-
spected analytically. We will begin by reviewing the unper-
turbed solutions �=0�. Afterward, a phase variable will be
defined for the free oscillator and a method presented in �14�
will be used to obtain a phase equation for the system when
feedback is introduced. Out of this phase equation, conclu-
sions can be drawn on how trajectories on the limit cycle are
affected by the introduction of the feedback.

In the Liénard representation, the system represented by
Eq. �6� takes the form of a system of two coupled first-order
differential equations. Scaling time as t→ t /�, and choosing
Psub−�=1 as a parameter consistent with oscillatory behav-
ior, we arrive at

�u� = v − f�u� �7�

v� = − u + 
1 − ��v − f�u����u − ru�t − ��� ,

where �=1 /�2 and f�u� is a piecewise linear function to re-
sult in Sg�u2−1� when derivated with respect to u,

f�u� = �u + 2 u � − 1

− u �u� � 1

u − 2 u 	 − 1.
	

In order to reach a definition for the phase of the free oscil-
lator, we need to look at its limit cycle. We set =0 in Eq. �7�

and find that with infinite dissipation ��→0�, oscillations
approach a discontinuous limit in which trajectories in �u ,v�
phase space satisfy

u0�t� = � 3e−t 0 � t � t0

− 3e−�t−t0� t0 � t � T0,


v0�t� = �u0 − 2 0 � t � t0

u0 + 2 t0 � t � T0,
 �8�

Here, t0=ln 3 and T0=2t0 is the period of free oscillations.
Equations �8� describe trajectories over two sections of the
limit cycle of Eq. �7� when dissipation is high. When u	1,
the solution monotonically decreases along the right branch
of the cycle, down to the point �1,−1�, where it jumps to the
left branch, landing at �−3,−1�. Once there, it increases
monotonically and departs from it at �−1,1�, reaching the
right branch at �3,1� and restarting the cycle. A phase can be
defined that increases monotonically for the free oscillator. In
this way, when the perturbation �the feedback� is turned on,
since the amplitude of the periodic trajectories will remain
almost unchanged, the way the motion is affected will be
reflected by the dynamics of the phase variable �27�. Ne-
glecting the time it takes trajectories to jump from one
branch of the cycle to the other, the sought phase will grow
uniformly as long as it satisfies

du0

d�
= − u0. �9�

The solutions of the system with feedback in the infinite
dissipation limit ��→0� consist of a different parametriza-
tion in time of the nonperturbed limit cycle, i.e.

u = u0���t�� . �10�

When the feedback is introduced by setting 0��1, an
equation to account for the dynamics of the phase can be
obtained. In first approximation, the orbit does not depend on
, but changes in the phase may occur. For this infinite dis-
sipation system, the Liénard representation with feedback,
analogous to Eq. �7� takes the form

0 = v − f�u�

v̇ = − u + 
1 − ��v − f�u����u − ru�t − ��� .

By elimination, it can be reduced to

u̇ = − u + �u − ru�t − ��� , �11�

together with the conditions on the jumps between branches,
namely, u=−3 if u�1 and u=3 if u	−1. Using the defini-
tion of phase �10� and condition �9�, DDE �11� can be written
as

d�

dt
= 1 −  + r

u0���t − ���
u0���t��

.

In the search for a solution of this phase equation, we will
use a perturbative procedure which takes into account the
fact that there are two time scales in the problem �24�. A fast
time t is adequate to describe the motion on the limit cycle of
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the free oscillator. Due to the highly dissipative nature of the
system, a much slower time s=t is required to describe the
perturbations of the motion. In the two-timing method, the
two time scales are treated as independent variables. In this
way, we propose a perturbative solution ��t ,�=�0�t ,s�
+�1�t ,s�+O�2�. Derivation respect to time, following the
chain rule, becomes d

dt →
d
dt + d

ds . The zeroth-order equation
reads

d�0

dt =1, and its solution is

�0�t,s� = 1 + ��s� .

Using this result to go further to order , we are lead to
equation

d�1

dt
= − 1 −

d�

ds
+ r

u0�t − � + ��s − ���
u0�t + ��s��

.

Since �1�t ,s� is the first-order correction to the phase per-
turbed by the feedback, we want its average respect to the
fast time t over each period of oscillation to be zero. Other-
wise the phase of the perturbed problem would diverge from
the one of the free oscillation. This imposes the solvability

condition 1
T�0

T d�1

dt dt=0, or

d�

ds
= − 1 + rF��� , �12�

where

F��� =
1

T
�

0

T u0�� + ��
u0���

d� ,

and �=��s−��−��s�−� remains constant over the integral
on �= t+��s�. If we propose a linear solution for Eq. �12�

��s� = �s + �0, �13�

we find that

� = − ��1 + �� , �14�

and F��� can be computed. Note that in general, F��� will
take a different form depending on whether u0 lies on the
right or left branch of the limit cycle. In our problem,

F��� = �− 1�ne−�−nt0�� 4
3n + 1� + 4

3�� ,

− �n + 1�t0 � � � − nt0,

with n=0,1 ,2 , . . .. Plunging ansatz �13� into Eq. �12�, we
find an equation relating parameters � and �,

� = − 1 + rF��� . �15�

Together, expressions �14� and �15� lead to

� =
− �

1 − �1 − rF����
. �16�

The period of the perturbed orbit is calculated as

T =
2t0

1 + �
=

2t0

1 − �1 − rF����
, �17�

with � satisfying Eq. �16�. The way of computing the period
of the solution for a given feedback strength  and reflection

coefficient r consists in finding a solution of Eq. �16� �i.e.,
the values of �� ,�� that would satisfy the equation�, and then
introducing that � in the expression above. In Fig. 2 we plot
a line of solutions of Eq. �16� for fixed  and r. As it is, for
some values of � there are two values of � which satisfy the
condition �that is, for some ranges of � the relation ����
implied by Eq. �16� is noninjective�. In those cases, T admits
two solutions.

The periods of the perturbed solutions T, computed as
described above, are represented versus the delay � with a
solid line in Fig. 3. For that values of  ,r, periods of numeri-
cal solutions of system �7� are plotted as dots in the same
graph to illustrate the agreement of the analytical calcula-
tions with the numerical solution �see caption of Fig. 3 for
the parameters used in the simulation�. The period exhibits
bistability for � sufficiently large. When a bistability region
is crossed, a “jump” occurs in T.

IV. ACOUSTIC FEATURES OF THE SOLUTIONS

The jumps in periods of solutions mentioned in the previ-
ous section bear a resemblance to the frequency jumps dis-
cussed in Sec. II. This nonlinear feature of systems with
delayed feedback is one of the candidates for being respon-
sible for the generation of the phenomenon. By synchroniz-
ing an adequate pressure gesture with an excursion of param-
eter � which includes the crossing of a coexistence region,

FIG. 2. �Color online� Solutions of Eq. �16� with =0.22 and
r=0.7. Every pair �� ,�� in the line is then used to calculate the
period of a perturbed solution using Eq. �17�. In this way, periodic
solutions coexist when there are two points in the line with the same
�.

FIG. 3. �Color online� Period as a function of delay � for DDE
system �6� with =0.22, r=0.7. The line is the plot of the analytical
result obtained by means of the two-time method on the phase
equation of the system. The dots correspond to period measure-
ments on numerical solutions of Eq. �7� �in the limit �→0; �
=100 was set�.
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we expect to generate a synthetic syllable in which a fre-
quency jump occurs. A set of equations similar to Eq. �1� has
been previously used to generate diverse syllables, as pres-
sure Psub was varied over a time interval following different
patterns �28�. Here, we will introduce a very simple pressure
pattern, which consists of increasing the pressure beyond the
value for which the folds oscillate, and after a time interval,
returning to a subthreshold value, at which the folds stay in a
stable fixed point �no displacement�. During that time, the
length of the tract L is linearly incremented, inducing the
delay � to cross a region of bistability. As a consequence, a
jump will occur in the period of the solutions. This effect is
reflected by the acoustic features of the synthetic syllable. A
jump in the frequency of the generated sound occurs, as ex-
pected, when the periodic solution corresponding to the start-
ing length Li no longer exists, and trajectories in the phase
space are attracted to the periodic orbit corresponding to final
length Lf. Figure 4 illustrates, from top to bottom, the sono-
gram of the synthesized sound, the normalized sound wave,
the pressure gesture, and the vocal tract stretching.

Not every jump in the fundamental frequency of a bird-
song can be attributed to this mechanism. In some cases,
jumps correspond to sounds generated successively by each
of the two sound sources. Yet, unilaterally generated sounds
with frequency jumps have been recently reported �13�. The
mechanism illustrated in this work shows that in these cases,
rapid acoustic changes do not necessarily require fast muscle
control.

V. CONCLUSIONS

In this work we studied the dynamical responses of a
simple interacting sound source-vocal tract system. We have
shown that for lengths such that the resonances are similar to
the natural frequency of the source, multistability occurs.
This dynamical scenario implies that it is possible to have
rapid changes in the acoustic output of the system, even un-
der smooth variations of the parameters.

As it was mentioned upon introduction of the model in
Sec. II, the dynamical system accounting for the avian vocal
organ presents little complexity, namely, just the possibility
to go through a Hopf bifurcation. It is therefore the interac-
tion of the vocal tract which is responsible for the nonlinear
effect reflected by the frequency jump in the syllable.

Complex behavior arises when the tract is taken into con-
sideration. In our model, the vocal tract does not act as a
mere filter that enhances some frequencies and attenuates
others �28�, but it interacts with the tract, inducing a delayed
feedback in the supraglottal pressure Pi. Recent observations
suggest that by varying the geometry of the vocal tract, a
feedback in supraglottal pressure is allowed �see, for in-
stance, Hatzikirou et al., �9��. Among the complex bifurca-
tion scenarios led to by introducing the interaction with the
tract, delayed feedback appears as a candidate for the pro-
duction of the jumps in pitch mentioned in the reference. The
use of the minimal model for the syrinx proposed in this
paper only pursued the goal of identifying what part of the
complexity of the syllable has origin in the complexity of the
vocal organ, and which comes as a signature of nonlinear
effects introduced by the interaction with the tract �such as

coexistence of periodic solutions�. When the frequency asso-
ciated with the delay is not close to the fundamental fre-
quency of the sound produced, the vocal tract introduces no
nonlinear effect. Once settled this issue, the mechanism is
easily applicable to more complete models including more
complex neuromuscular patterns as well as a more detailed
level of description of the syrinx.

Birdsong production requires the integration of a nervous
system to peripheral biomechanical systems. In general, the
task of unveiling where complexity is originated is not an
easy one. This issue is addressed by Zollinger et al. in �13�,
where they suggest that nonlinear phenomena may not re-
quire active neural control, but could as well arise from non-
linear effects occurring in the periphery. From a wider per-
spective, this mechanism highlights the need to study in
parallel neural control and the dynamics of the periphery in
order to understand the emergence of complex behavior.
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FIG. 4. �Color online� Synthetic sound produced by numerical
integration of Eqs. �1� and �2�. Sound �second panel from top� is
produced when the system is driven by a simple pressure gesture
�third panel from top�. As the longitude of the tract is varied within
the region of coexistence �bottom panel�, the sonogram �top panel�
exhibits a frequency jump. The system was integrated with param-
eter values �� ,� , Psub ,k�= �7000
 ,0.1,0.3,1.0�, and Psub=−1.0,
and feedback coefficients �� ,r�= �1.0,0.4� to produce the syllable
�Psub=−1.0 corresponds to no phonation�, and L grew linearly dur-
ing phonation from Li=5.01 cm to Lf =5.4 cm, corresponding to
delays �i=29.48 ms and � f =31.75 ms.
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