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Nonlinear Model Predicts Diverse Respiratory Patterns of Birdsong
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A central aspect of the motor control of birdsong production is the capacity to generate diverse
respiratory rhythms, which determine the coarse temporal pattern of song. The neural mechanisms that
underlie this diversity of respiratory gestures and the resulting acoustic syllables are largely unknown. We
show that the respiratory patterns of the highly complex and variable temporal organization of song in the
canary (Serinus canaria) can be generated as solutions of a simple model describing the integration
between song control and respiratory centers. This example suggests that subharmonic behavior can play
an important role in providing a complex variety of responses with minimal neural substrate.
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FIG. 1 (color online). Acoustic identity of song syllables in
canaries (spectrogram). Three different temporal patterns are
identified in terms of the local spectral properties of the air sac
pressure, denoted by A, B, and C.
The characteristic temporal patterns of birdsong, with
alternating sound and silence, arise primarily from the
activity of respiratory muscles [1]. Sound is typically
generated during expiration as the elevated air pressure
drives the airflow that induces phonation. Silent periods in
between song elements correspond to short inspirations
(minibreaths) unless the sound pulse rate is very high
[2,3]. A remarkable capacity to rapidly switch between
expiration and inspiration gives rise to the complex tem-
poral song structure and at the same time allows birds to
sing long, uninterrupted songs. Song in the Waterslager ca-
nary is a long sequence of distinct syllables, each of which
is repeated a variable number of times (phrase) before a
switch to a new syllable type occurs. Syllable repetition
rate varies between phrase types and can be as high as
30 Hz for syllables that are followed by a minibreath and
even greater than 60 Hz for phrases which are sung during
a sustained expiration (pulsatile syllables) [4,5]. Song is a
learned behavior, and it is unknown how the motor gestures
for different syllable types, with remarkably different
rhythms, are represented in the central motor program.

A song is built out of a diversity of syllables. Each
syllable is generated by the vocal organ when activated
by a specific pressure pattern. The different pressure pat-
terns could be generated when the appropriate muscles are
activated either by different neural populations, or by a
unique neural population displaying a variety of activity
patterns. The latter scenario is possible since neurons
behave as nonlinear devices. Nonlinear systems are known
to exhibit qualitatively different behaviors (with strict to-
pological restrictions) under different parameters. There-
fore, a variety of temporal patterns can be generated by a
single system under different operational regimes. Here we
use a variety of tools from nonlinear dynamics to show that
the temporal features of air sac pressure data recorded from
singing canaries can be reproduced with such a simple
model.

The sonogram of the song depicted in Fig. 1 presents
three regimes (A, B, and C) characterized by different
syllable repetition rates. Simultaneous to the measurement
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of the song we recorded the air sac pressure [see methods
(a)]. The pressure time series corresponding to the sono-
gram of Fig. 1 is displayed in Fig. 2(a). In this figure, we
can notice that regimes B and C are different from regime
A, since the pressure presents large fluctuations. Since each
regime is generated by an almost periodic pressure pattern,
we analyzed the pressure time series data with techniques
developed in the field of nonlinear dynamics to study
recurrent trajectories. We extracted segments of data cor-
responding to each regime, and embedded them in a three-
dimensional phase space [see methods (b)] [6]. Then, we
studied their topological organization in phase space [6].
Specifically, we computed the linking numbers between
the extracted segments ([see methods (c)]. The purpose for
this calculation is to provide a quantitative way to support a
model. The linking numbers act as a fingerprint: if the
orbits generated by a model fail to present the topological
organization of the experiments, the model has to be
rejected [6]. This procedure is analogous to standard tests
(e.g., least squares) in linear systems [6,7]. The embedded
segments of pressure data are displayed in Fig. 2(c). The
segments extracted from regimes A and B do not link each
other (they could be separated an arbitrary distance in the
3-1 © 2006 The American Physical Society
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FIG. 2 (color online). The recorded air sac pressure time series data contains 3 syllable types with different spectral characteristics
(a). The entire respiratory pattern can be simulated by a periodically driven model by changing the forcing frequency twice in order to
generate the three different segments. Equations were integrated with the following parameters: m � 0:5, t � 1:0, k � 1:0, � � 5:0,
E1 � �1:3, and E2 � �1:5. (b) Embedded segments (with a time delay of 0.31 sec) can be used to characterize the data. Dotted (in
online version, blue) segments correspond to type A patterns, dashed (in the online version, green) segments correspond to type B
patterns, while the solid lines are used to plot the patterns of type C (in online version, red). (c) The embedding of the synthetic patterns
allows a comparison between experimental data and model of topological nature. If the topological organization of the model does not
match the data, the model is rejected (d). The topological organization can be described through indexes as the linking numbers
between orbits.
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embedding space without the orbits ever intersecting),
while the segments of regime C link around the segments
of regime B (i.e., they can not be separated an arbitrary
distance in the embedding space without the orbits inter-
secting at some point).

We compared these features of the experimental data
with synthetic pressure data generated by a computational
model inspired in the known anatomy of oscine birds. As
sketched in Fig. 3, we describe the air sac dynamics by a
FIG. 3. Schematic of the proposed organization for integration
of central song control and respiratory centers. Inhibitory con-
nections are indicated by a black circle. Abbreviations: Insp,
inspiratory motor neurons; Exp., expiratory motor neurons.
Arrows indicate excitations, circles inhibition. PAm and RAm
represent the nuclei parambigualis and retroambigualis, respec-
tively. The oscillatory input represents a basic oscillation gen-
erated by telencephalic nuclei.
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variable x measuring the deviation from the volume of the
sacs at atmospheric pressure. In Eq. (1a) we model the sacs
as a damped mass (m), driven by inspiratory and expiratory
muscles against mechanical restitution (restitution con-
stant k), dissipation (dissipation constant �). The activities
of these muscles should be proportional to the activities of
brainstem nuclei parambigualis PAm (i1) and retroambi-
gualis RAm (i2), respectively [8,9], which are thought to be
mutually inhibitory. These nuclei are the premotor nuclei
for the spinal motor neurons controlling inspiration and
expiration, respectively. Equations (1b) and (1c) describe
the activity of these nuclei using one of the simplest neural
additive models [10]. A harmonic function is used as a
simple input in our model to emulate the oscillatory tele-
ncephalic activity triggering birdsong production [11,12].

A mathematical implementation (or computational
model) of the integrated neural-mechanical system can
be written as a dynamical system as this:

m
d2x

dt2
�kx��

dx
dt
�2i1� i2 (1a)

�
di1
dt
��i1�S�E1� i2�f�x�� (1b)

�
di2
dt
��i2�S�E2� i1�Acos�$t��; (1c)

where Eqs. (1b) and (1c) describe the way in which the
activity of each nucleus converges either to zero (no activ-
ity) or to at most a saturation value, depending on the total
input on the nucleus [the sigmoideal function S�x� �
1=�1� e�x� provides a frequently used model for saturat-
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FIG. 4 (color). Arnold tongues for the model, displaying the
regions of parameter space where different subharmonic solu-
tions are found. The parameter values marked as A, B, and C
were used to generate the synthetic emulating the pressure
pattern of Fig. 2(a) (a). The spectral properties of the segments
A, B, and C (b). A quantitative-qualitative classification scheme
for pressure patterns generating different syllables for six birds.
A, B, and C refer to the patterns in Figs. 1 and 2(a). The colors
represent spectral features: red for large-amplitude solutions
locked to the forcing frequency, green for period 2 solutions of
large amplitude, blue corresponds to period 3 solutions, and pink
for high frequency solutions mounted on a dc value (pulsatile
syllables). The fundamental frequency of the segment is repre-
sented on the horizontal axis [(c), left]. The delicate structure
shown in the left panel disappears under the hypothesis that the
lower frequency in the fast Fourier transform of each solution is
the fundamental one. A enlarged region from (10 to 18 Hz)
displays a mixing of different pattern types under this assump-
tion [(c), right].
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ing functions, and is chosen for simplicity]. A monotoni-
cally increasing function f�x� � 9x3=�1� x3� represents
the inhibitory effect of volume [13] and CO2 sensors on the
activity of the neurons responsible for inspiration (which
ceases if the volume of the sacs increase beyond some
value). The negative signs with which the activities i1
and i2 enter in the arguments of the sigmoideal functions
account for the mutual inhibition of RAm and PAm. The
right-hand side of Eq. (1a) accounts for the active control
of RAm and PAm of expiratory and inspiratory muscles,
respectively, and the coefficients of i1 and i2 are chosen so
that the dynamical system (1a)–(1c), before being forced
(i.e., A � 0), presents excitability. In order to emulate
regimes A, B, and C we changed the driving frequency
(!) without altering the driving amplitude A (notice that
changes in both parameters can give rise to different pres-
sure patterns, but the change in the frequency of the forcing
is a necessary condition to synthetize patterns that corre-
spond to the experimental ones). The resulting synthetic
pressure patterns are obtained by plotting P0 � x, since the
air sac pressure will be inversely proportional to the vari-
able measuring the air sac volume departure from rest (x)
[see Fig. 2(c)]. Beyond the similarity with the measured
patterns [Figs. 2(a) and 2(b)], the segments emulating the
different regimes were embedded like the experimental
ones, and their topological organization was found to be
identical [Figs. 2(c) and 2(d)].

The different solutions exhibited by our model are sub-
harmonic solutions, i.e., n-periodic solutions that repeat
themselves after an integral multiple of the forcing period
(n) [14]. For different values of the forcing amplitude and
frequency, different solutions are found. The regions of the
parameter space, for which solutions of the same period are
obtained, are known in the field of nonlinear dynamics as
Arnold tongues, and their relative organization in the fre-
quency domain is very strict [15,16]. For our model, the
regions of the parameter space where different solutions
are found is displayed in Fig. 4(a). Notice that for sim-
plicity we use a harmonic function to emulate RA activity,
but any periodic function driving our system would present
the same solutions [16].

In order to further test the hypothesis that the pressure
patterns of different syllables could be the solutions of a
unique, simple systems driven at different parameter val-
ues, we classified the different pressure patterns recorded
in different birds, according to their spectral content. In the
three regimes present in the example (Fig. 1), we find the
following spectral features [Fig. 4(a)]. The first regime
presents a peak at about 25 Hz (left panel). The air sac
pressure in regime B can be characterized by a large peak
at 20 Hz (center panel), which slowly drifts toward smaller
frequency values, even if acoustically, the syllables at the
beginning and at the end of regime B present different
features. Regime C presents two large peaks: one at 23 Hz,
and a second one at 11.5 Hz (right panel). There are two
competing explanations for this transition. Either the bird
changes dramatically the fundamental frequency f0 from
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regime B (f0 � 20 Hz) to regime C (f0 � 11:5 Hz) in a
transition that also involves an important change of har-
monics for the pressure pattern, or the bird makes a small
change of the fundamental frequency (from f0 � 20 Hz to
f0 � 23 Hz), and a classical bifurcation (period doubling)
takes place, as in the model. If different patterns occur as
the result of bifurcations, their fundamental frequencies
would be organized in clusters ordered in specific ways,
and spectral contents mostly concentrated in n peaks, the
greatest of which would be identified as the fundamental
frequency.

In the left panel of Fig. 4(c) we represent each syllable as
a point, with its color representing the syllable type, lo-
cated at the corresponding fundamental frequency (accord-
ing to the bifurcation paradigm) of the air sac pressure
pattern. Remarkably, the different syllable types present a
clustered nature. For example, for each bird, the period 2
solutions are always found in between the solutions of
3-3
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period 1 corresponding to trills (e.g., A in Fig. 1), and
solutions of period 1 associated with large oscillations (B
in Fig. 1). Also, solutions of type A occur, for each bird, at
higher frequencies than those of type B. The solutions of
period 3 are located, for each bird, at higher frequencies
than those of large-amplitude period 1 solutions (e.g.,
regime B) and at lower frequencies than the solutions of
regime A.

In the right panel of Fig. 4(c) we classify the pressure
patterns according to the more parsimonious hypothesis
that the lowest peak of the spectrum corresponds to the
fundamental frequency. The bird would be capable of
generating pressure patterns with the same fundamental
frequency but completely different spectra of harmonics.
Moreover, the delicate structure shown in the left panel
[i.e., well-defined Arnold tongues, ordered relative to each
other as predicted the theory of nonlinear dynamical sys-
tems [14,15,17] ] disappears as solutions qualitatively dif-
ferent spectrally get mixed.

This work shows that the high diversity and complexity
of respiratory patterns of canary song can emerge as dif-
ferent solutions of a simple system. It is notable that the
remarkably different respiratory patterns of phrases in-
volving minibreaths and pulsatile syllables arise from
this model without a requirement for adding complexity.
According to these findings, generation of diverse pressure
patterns requires a system driven by different frequencies.
Direct support for this neural model requires simultaneous
measurement of activity in a telencephalic nucleus (as
RA), and in the respiratory circuit (as in RAm). Because
in many bird species the principal respiratory mechanisms
of song production are similar to those of the canary, this
model should be broadly applicable to singing behavior.
Furthermore, the model identifies a possible neural mecha-
nism for generating diverse rhythmic behavioral patterns in
general, despite the differences between systems in their
specific neural arrangements. Complex physiological
rhythms in intact animals are poorly understood [17], but
nonlinear mechanisms are beginning to be recognized as
an important component of neural pattern generation [18].
The present example suggests that subharmonic behavior
can play an important role in providing a complex variety
of responses with minimal neural substrate.

Methods.—(a) The technique for measuring air sac pres-
sure has been described in detail elsewhere [2–5]. Briefly,
air sac pressure was registered by the insertion of a silastic
cannula through the abdominal wall just posterior to the
last rib, so that it extended a few millimeters into a thoracic
air sac. The free end of the cannula was connected to a
miniature piezoresistive pressure transducer (Fujikura
model FPM-02PG), which was mounted on the bird’s
back. From this backpack the signals were transmitted to
a signal conditioning unit (Hector Engineering) outside the
cage, and the amplified signal was recorded simulta-
neously with microphone recordings (Audiotechnica
AT8356) of the song on a multichannel data recorder
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(TEAC RD-135T). We recorded several minutes of song
from 6 male canaries, capturing most of the vocal reper-
toire of each male. (b) The construction of a multivariable
environment for data (embedding) is performed by choos-
ing the first coordinate of a three-dimensional vector as the
variable at time t, the second and third as the recorded
variable at time t-�, and t-2�, i.e., �x�t�; x�t-��; x�t-2���.
The parameter � is called delay, and the topology of a
system is robust under this parameter [6]. (c) Gauss defined
the linking number of two loops A and B, described by two
vectors xA and xB [6] each of three components, as

L�A;B� �
ZZ
�xA � xB��dxA 	 dxB�=jxA � xBj

3:

In order to compute the linking number between segments
of data, we first built a vector of three components for each
segment as described in (b), using a time delay of 0.31 sec.
For each pair of segments, we used these vectors to calcu-
late the Gauss integral. If A, B, and C represent loops in
regimes A, B, and C of Fig. 1, we get L�A;B� � 0,
L�A;C� � 0, L�B;C� � 1.
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