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The bilateral simultaneous generation of sound in some oscine songbirds leads to complex sounds that
cannot be described in terms of a superposition of the isolated sources alone. In this work, we study the
appearance of complex solutions in a model for the acoustic interaction between the two sound sources in
birdsong. The origin of these complex oscillations can be traced to the nonlinear mode-mode interaction arising
when both sources are active. As an example, we analyze a remarkable sound produced by an oscine songbird
and show that the proposed dynamical scenario is compatible with the observed behavior.
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I. INTRODUCTION

The parallels between speech acquisition in humans and
song learning in songbirds are striking �1,2�. Songbirds, like
humans, depend critically on hearing a tutor during a sensory
period where they form memories of the sounds they will
later imitate, and also on hearing themselves during a sen-
sorimotor period where they correct the vocal output through
auditory feedback.

The capability of vocal imitation is not widespread, how-
ever. Apart from humans, only two distant groups of mam-
mals are vocal learners: cetaceans, and some bats. In con-
trast, almost half the bird species known to exist �4000 out of
9000� share this capability: oscines, parrots, and humming-
birds �1�. The similarities and several experimental advan-
tages �3� make these birds a very good animal model to study
the brain mechanisms involved in the learning of a complex
behavior. However, the avian vocal organ �the syrinx� stands
between the neural instructions and the emitted sound. The
syrinx is a nonlinear device which shows highly nontrivial
solutions on its own—small variations in the control param-
eters such as air sac pressure can lead to a complex acoustic
sequence �4�. Therefore, a knowledge of the syringeal dy-
namics is needed in order to understand how a neural in-
struction is translated into sound �5�.

The mechanism of sound production in oscine songbirds
is very similar to that used by humans to generate voiced
sounds �6�. As it is forced through the syrinx, airflow from
the air sacs induces the oscillation of small tissue masses
called labia, which form a valve. This oscillation in turn
modulates the airflow that is injected into the vocal tract as
an acoustic disturbance. Perhaps one of the most important
differences between the human larynx and the oscine syrinx
is that the latter is a bilateral structure: there are two sound
sources instead of only one, each containing a pair of labia.
The two sound valves are capable of vibrating independently,
and to some extent are also independently controlled �7�.
Some birds use only one valve for singing, but some use
both valves either alternatively or simultaneously �8�.
Among the birds with simultaneous production, there are

some where the valves oscillate quite independently of each
other �“two-voice” phenomenon�, but in others the sound
sources are coupled, giving rise to a complex sound that is
more than the superposition of both sides alone.

Nonlinear interaction between the two sound sources was
indeed demonstrated �9� in the call of the black-capped
chickadee �Parus atricapillus�. The equally spaced frequen-
cies appearing in the call’s spectrum were not always an
integer multiple of their difference. Further, lesions to either
side of the syrinx showed that these frequencies were sums
and differences of integer multiples of the fundamental fre-
quencies of the isolated sides �heterodyne frequencies�. A
linear summation of the signals from the isolated sides did
not give rise to the spectrum of a normal call, suggesting that
the heterodyne frequencies may result from a nonlinear in-
teraction between the two syringeal sources. The physical
mechanism responsible for such interaction, however, was
speculative. Structural as well as acoustic interactions were
considered �9,10�.

On the other hand, nonlinear phenomena in the human
voice have already been addressed by extensive modeling
approaches. These nonlinear effects are usually related to
voice disorders �like laryngeal paralysis� and even normal
voices under certain conditions �like vocal fry and creaky
voice�. See, for instance, Ref. �11� for asymmetric vocal fold
oscillations and Ref. �12� for biphonation.

Based on previous theoretical efforts �13–15�, a model
was recently proposed �16� to study the acoustic interaction
between the avian source and tract, and between the two
sources, with the isolated source considered as a two-
dimensional �2D� dynamical system. In that work, the issue
of a single source with delayed feedback due to acoustic
coupling to the vocal tract was addressed. In this work we
focus instead on the complementary case of the two sound
sources simultaneously active, without feedback from the
vocal tract. It was shown �4� that the isolated syrinx can
display complex behavior by itself, like period-doubling bi-
furcations, mode locking, and nonperiodic dynamics. Ac-
cordingly, the isolated syrinx was modeled as a nonlinear
system with several degrees of freedom �e.g., a two-mass
model of the syrinx �4�, or a membrane model �17��. Thus, in
this work the choice of a simple �2D� model for the isolated
sound source is dynamical in nature: any observed complex*Corresponding author. rodrigo@df.uba.ar
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behavior must arise only from the interaction between the
two sound sources.

In Fig. 1 we show a remarkable sound by the magpie
tanager �Cissopis leveriana� �18�, a South American oscine
songbird. Notice the two qualitatively different regimes. In
segment B, the clearly different temporal and spectral evolu-
tion of the two dark strokes is a signature of the two sound
sources being uncoupled and acting independently. However,
in segments A and especially C the detailed time evolutions
of the two dark strokes closely resemble each other although
they are not harmonically related. In addition, several paral-
lel strokes appear both above and below the original ones at
frequency values that are not integer multiples of the fre-
quencies of any of the original strokes, but at heterodyne
frequencies �sums and differences of integer multiples of the
fundamental frequencies�. These heterodyne frequencies ap-
pear when the fundamental frequencies are very close and
the sound amplitude is high. It is tempting to put forward
several questions: What is the dynamical origin of the side-
bands and subharmonic frequencies? Is acoustic coupling be-
tween the two sides of the syrinx a plausible physical origin
for the interaction? Is the interaction turned on �or at least
increased� when the fundamental frequencies of the sides are
close enough?

In this work we study the acoustic interaction between the
two sound sources as a plausible physical origin of subhar-
monic frequencies and sidebands in birdsong like those
shown in Fig. 1. We show here that complex solutions due to
nonlinear mode-mode interaction appear in a specific region
of the parameter space of our model �16�. The system ap-
proaches that region along paths in parameter space that have
a direct interpretation in terms of realistic motor gestures. In
Sec. II the model for the acoustically coupled sound sources
is presented, and the region worth exploring is suggested by
the result of a normal form computation. In Sec. III the re-
gion is explored numerically, and solutions are shown with
complex features resembling the ones presented by a para-
digmatic sound in the song of a songbird. The dynamical
origin of the spectrum’s sidebands and its relationship with
the concept of a nonlinear interaction as a multiplication of
signals is explained in Sec. IV. Finally, Sec. V contains our
conclusions.

II. MODEL FOR SOURCE-SOURCE
ACOUSTIC INTERACTION

In a recent work �16�, we proposed a model for the acous-
tic interaction in birdsong vocalizations and studied the par-
ticular case of acoustic interaction between source and tract,
focusing on the mechanism that leads to a net energy transfer
from airflow to labial motion. In this work, instead, we con-
sider the original model ��16�, “extended flapping model”�
and use it for the complementary case of the two sound
sources active without feedback from the tract. In this case
our model reads

ẋ1 = y1,

ẏ1 = − k1x1 − By1 − Cx1
2y1 + pg1, �1�

ẋ2 = y2,

ẏ2 = − k2x2 − By2 − Cx2
2y2 + pg2, �2�

pg1 = ps − � x0 + x1 − �y1

x0 + x1 + �y1
��ps − pi� , �3�

pg2 = ps − � x0 + x2 − �y2

x0 + x2 + �y2
��ps − pi� , �4�

pi = �1�x1 − �y1� + �1y1 + �2�x2 − �y2� + �2y2, �5�

where subscripts 1 and 2 stand for the left and right sides of
the syrinx, respectively. Here x1,2 are the departures from the
prephonatory positions of the labia midpoints, k1,2 are the
linear restitution coefficients, B and C are the linear and
nonlinear dissipation coefficients, ps is the air sac pressure, pi
is the pressure at the vocal tract input, x0 is the prephonatory
position of the labium �rectangular profile�, � is a phenom-
enological parameter that describes the speed of the labial
surface wave, and �1,2 and �1,2 are the acoustic coupling
coefficients �which depend on the frequency but in this work
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FIG. 1. A syllable from the song of the magpie tanager �Cissopis
leveriana� �18�, an oscine songbird �bilateral syrinx with two sound
sources�. �a� Sonogram. In the interval labeled B, the two sound
sources act independently. Something different apparently happens
in intervals A and C, however, when the fundamental frequencies
are close to each other and sidebands appear as parallel, additional
strokes. The two sound sources seem to interact in some way, since
the detailed time evolution of their fundamental frequencies now
closely resemble each other. �b� Sound envelope. The occurrence of
subharmonic frequencies and sidebands coincides with intervals of
large sound amplitude and close fundamental frequencies �A and
C�. At the end of interval C the amplitude is small, but the frequen-
cies are even closer. On the other hand, at the beginning of interval
B the frequencies are very close but the amplitude is very small.
Different renditions of the same sound by the bird share the same
features described here.
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are assumed to be constant for simplicity� �16�.
The forces pg1 and pg2 that account for the energy transfer

from airflow to labial motion in order to sustain the oscilla-
tion are due to the interlabial pressure being created between
the lateral and medial labia on each valve. They depend on
the geometry of the valve profile, and on both the air sac
pressure ps and the pressure at the vocal tract input pi. The
latter depends on the variables from both sources and thus
couples their dynamics.

A preliminary study of the solutions for a related system
was presented in our previous work �16�. Here we attempt a
further level of analysis in order to understand the dynamical
origin of this model’s rich behavior.

A. Approximations

In order to unveil the path worth exploring in parameter
space, we first perform a third-order approximation to the
geometric flapping quotient in Eqs. �3� and �4�:

x0 + x − �y

x0 + x + �y
� 1 −

2�

x0
y +

2�

x0
2 xy +

2�2

x0
2 y2

−
2�

x0
3 x2y −

4�2

x0
3 xy2 −

2�3

x0
3 y3. �6�

Within this approximation, the model �Eqs. �1�–�5�� can be
rearranged in the more suitable form

ẋ1 = y1,

ẏ1 = − �1x1 + �y1 − �x1
2y1 + 	x2 + 
y2

+ �quadratic terms x1y1,y1
2,x2y1,y1y2�

+ �cubic terms x1y1
2,x1x2y1,x1y1y2,x2y1

2,y1
2y2,y1

3� ,

�7�

ẋ2 = y2,

ẏ2 = − �2x2 + �y2 − �x2
2y2 + 	x1 + 
y1

+ �quadratic terms x2y2,y2
2,x1y2,y2y1�

+ �cubic terms x2y2
2,x2x1y2,x2y2y1,x1y2

2,y2
2y1,y2

3� ,

�8�

where

�1,2 = k1,2 − � , �9�

� = 2�ps/x0 − B + 
 , �10�

� = C − 2��x0	 + ps�/x0
3, �11�

	 = � , �12�


 = � − �� . �13�

For simplicity, we choose the acoustic coupling parameters �
and � to be symmetric. The only asymmetry in this model is
then given by k1�k2.

Note that the core of Eqs. �7� and �8� is the standard form
of two generalized van der Pol relaxation oscillators. The
oscillators are linearly coupled to each other through the
terms 	x2,1+
y2,1. Regarding the coupling coefficients 	 and

, we additionally assume throughout the text the following
weak coupling approximation �see the Appendix�:

	


��
� �2

1/2,
	2

��
� �2,


2

��
� 1, �14�

where ��=�1−�2=k1−k2. Parameter values are listed in
Table I. As we shall see, this standard set of values is suffi-
cient for the system to have a rich behavior.

B. Normal form

Computation of the normal form for Eqs. �7� and �8� in
the weak coupling approximation leads us to the following
system for the mode amplitudes �see the Appendix�:

ṙ1 = 
1r1 + r1
3 + br1r2

2, �15�

ṙ2 = 
2r2 + cr2r1
2 + dr2

3, �16�

where 
1 and 
2 are the unfolding parameters. Gucken-
heimer and Holmes �19� showed that 12 different unfoldings
for this system can be classified according to the signs of b,
c, d, and d−bc. Within the weak coupling approximation, d
and d−bc are always positive, and thus according to the
table on p. 399 of Ref. �19� only four cases are possible for
our system �see the Appendix�:

TABLE I. Parameter values.

Original parameters Units

8.2�108�k1�1.8�109 �s−2�
k2=8�108 �s−2�
0� ps�2�107 �cm s−2�
B=1000 �s−1�
C=5�108 �s−1 cm−2�
�=1�10−5 �s�
x0=0.04 �cm�
�=3�106 �s−2�
�=700 �s−1�

Derived parameters Units

8.17�108��1�1.797�109 �s−2�
�2=7.97�108 �s−2�
−330���4670 �s−1�
�=4.97�108 �s−1 cm−2�
	=3�106 �s−2�

=670 �s−1�
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Case Ia Case II Case III Case IVa

b + + − −

c + − + −

The unfoldings for these cases are displayed in Fig. 2. Notice
that they all have a nontrivial stable fixed point in the first
quadrant of the �
1 ;
2� space, meaning that both modes are
turned on. That is the region we should inspect in order to
find complex solutions. What is a realistic path in parameter
space that would allow us to inspect that region?

Much of the variety in songbird vocalizations can be ac-
counted for by the action of the two model vocal gestures ps
and k1,2 in Eqs. �1�–�5� �13,14�. These vocal gestures have a
well-established interpretation in terms of physiological data
�air sac pressure and ventralis Syringealis muscle activity,
respectively�. In the bird, the air sac pressure is related to the
sound amplitude, while the vS muscle activity has a strong

positive correlation with the fundamental frequency. There-
fore, we choose to inspect the solutions arising when ps is
increased, for arbitrary values of �k=k1−k2 �within the weak
coupling aproximation�. The direction of increasing air sac
pressure ps for arbitrary �k is mapped onto the line


2 = �1 +
2
2

��
�
1 +

2	


��
�17�

�see the Appendix�, which is displayed as a dashed line in the
unfoldings of Fig. 2. The line has a slope �1 �slightly de-
pending on the value of ��� and a little offset from the
origin. This assures us that the system enters the region of
existence of the nontrivial fixed point when ps is large
enough.

III. SIMULATIONS

In order to show that our model’s behavior is consistent
with the observed features of the sound displayed in Fig. 1,
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(a) Case Ia

µ1

µ2

(b) Case II

slope c

slope 1/b

µ2

µ1

slope 1/b

(c) Case III

slope c

µ2

µ1

slope c
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FIG. 2. Unfoldings for the system of Eqs. �15� and �16�. �a� Case Ia. �b� Case II. �c� Case III. �d� Case IVa. Every unfolding has a
nontrivial stable fixed point in the shaded regions. The dashed line �Eq. �17�, with slope �1 and perturbative offset from the origin� is the
direction of increasing air sac pressure ps. On increasing air sac pressure ps, the system enters into the region of the nontrivial fixed point
always very quickly, because its boundaries are always either very steep or very flat �slopes �1 /b��40 and �c��0.1, respectively, for the
parameter values listed in Table I�.
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in this section we show numerical simulations along the line
in parameter space given by Eq. �17�, that is, increasing air
sac pressure ps for an arbitrary difference in labial tension
between the sides �k=k1−k2 �within the weak coupling ap-
proximation�.

In Fig. 3 we show a map of the spectral content of our
model’s solutions, as a function of ps and �k. We found three
distinct regions. In the first region �small ps values� the so-
lutions are not oscillatory. In the second and third regions the
solutions are always oscillatory, but differ in their spectral
content. In the second region, the spectrum has two very
pronounced peaks �the fundamental frequencies of the modes
F1 and F2� and several less pronounced peaks at integer mul-
tiples of each fundamental frequency �harmonic overtones
nF1 and mF2, with n ,m�N�. The spectrum in this case can
be described as the linear superposition of two independent
harmonic spectra. On the other hand, the third region is dis-

tinguished by its spectrum having, in addition, peaks at fre-
quency values other than integer multiples of the two most
pronounced peaks �for instance, at the heterodyne frequency
values nF1+mF2, with n ,m�Z�. The shape of the boundary
between regions 2 and 3 is a key feature of this system: the
region of subharmonic frequencies can be approached by ei-
ther increasing air sac pressure ps �resulting in an increased
sound amplitude� or decreasing labial tension difference �k
�resulting in closer fundamental frequencies�, in qualitative
agreement with the behavior observed in the syllable of
Fig. 1.

The shape found in Fig. 3 can be understood in terms of
the unfolding parameters 
1 and 
2. The length of the radius
vector 
,


 = 	
1
2 + 
2

2, �18�

represents the distance from the Hopf-Hopf bifurcation �the
origin in the unfoldings of Fig. 2� to a given point in param-
eter space. The larger the value of 
, the larger the distance
from the bifurcation point. Complex solutions should be ex-
pected to be more likely the farther we go from the bifurca-
tion point. In Fig. 4 we plot 
 as a function of our control
parameters ps and �k. Notice that 
 increases �darker shad-
ing� either as ps is increased or as �k is decreased, meaning
that the system moves farther away from the bifurcation
point. There is a qualitative agreement between the shape of
these contours and that of the boundary between regions 2
and 3 in Fig. 3.

Finally, we illustrate the behavior of our model with two
simulations �Fig. 5�, plotted as spectrograms of the acoustic
pressure pi. Two vocal maneuvers are simulated that make
the system move from region 2 to region 3: an increase in the
air sac pressure ps, and a decrease in the labial tension dif-
ference �k. The two simulations show a change in spectral
content �appearance of subharmonic frequencies� as the con-
trol parameter is abruptly changed around 0.07 s.
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FIG. 3. Map of the spectral content of the model Eqs. �1�–�5� as
a function of air sac pressure ps and labial tension difference �k
=k1−k2 �k2 is fixed at 8�108 s−2�. Region 1 �open circles�: con-
stant solutions, no oscillation takes place. Region 2 �crosses�: peri-
odic solutions with two independent frequencies F1 and F2 �the
fundamental frequencies of the two modes, both active� and their
corresponding harmonic overtones at integer multiples of them, nF1

and mF2 �“harmonic frequencies”�, and no other frequencies. Re-
gion 3 �black squares�: oscillatory solutions where heterodyne fre-
quencies are found �“subharmonic frequencies”�. Heterodyne fre-
quencies are not integer multiples of the fundamental frequencies,
but are sums and differences of integer multiples of them: nF1

+mF2, with n ,m�Z. The Hopf-Hopf bifurcation takes place at the
boundary between regions 1 and 2. Notice that the region 3 of
subharmonic frequencies can be reached by either increasing air sac
pressure ps �and thus increasing sound amplitude� or decreasing the
difference in labial tension between the sides �k �and thus decreas-
ing the difference between the fundamental frequencies�. Parameter
values other than ps and k1 are listed in Table I. The weak coupling
approximation is not valid for the first few rows at the bottom
��k�0.0�.
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FIG. 4. Contour plot of the radius vector 
 in the unfolding
parameter space, Eq. �18�, as a function of air sac pressure ps and
labial tension difference �k. Larger values of 
 are represented by
darker shading. 
 is increased by either increasing ps or decreasing
�k, moving the system farther from the bifurcation point. The
shapes of these contours are in qualitative agreement with the shape
of the boundary between regions 2 and 3 shown in Fig. 3.
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IV. DYNAMICAL ORIGIN OF SIDEBANDS
IN THE SPECTRUM

The appearance of either heterodyne frequencies or side-
bands �new frequency components close to an original fun-
damental frequency and not related harmonically to it� in a
signal’s spectrum is usually associated to the concept of non-
linear interaction between two harmonic oscillations �10�.
The simplest model usually invoked to account for the non-
linear interaction of two oscillators is a nonspecific ampli-
tude modulation of any of them, which leads to the multipli-
cation of the two oscillations �10�. In mathematical terms,
consider the �sinusoidal� amplitude modulation of a sinu-
soidal oscillation

f�t� = A�t�cos��1t�

= �1 + A0 cos��2t��cos��1t�

= cos��1t� + A0 cos��2t�cos��1t�

= cos��1t� + 1
2A0 cos��1 + �2�t + 1

2A0 cos��1 − �2�t ,

�19�

where we have used the trigonometric identity cos � cos �
= 1

2cos��+��+ 1
2cos��−��. Equation �19� says that an oscil-

lation at a frequency �1 which is modulated in amplitude at
a frequency �2 �usually considered much smaller� yields a
spectrum with the original frequency �1, plus two sidebands
at �1+�2 �slightly above �1� and �1−�2 �slightly below
�1�. This simple and generic model, however, does not put
forward any explanation about the way in which the two
signals could actually become multiplied.

So amplitude modulation is a possible phenomenon lead-
ing to the multiplication of two signals, which is in turn a
nonlinear operation and translates into sidebands in the spec-

trum. But what is the dynamical origin of the multiplication?
What is its relationship with the actual interaction?

In order to explicitly see the dynamical origin of the mul-
tiplication, consider two symmetrically coupled nonlinear os-
cillators

ẋ1 = y1,

ẏ1 = − �1x1 + �1y1 + f�x1,y1� + g�x1,y1,x2,y2� , �20�

ẋ2 = y2,

ẏ2 = − �2x2 + �2y2 + f�x2,y2� + g�x2,y2,x1,y1� , �21�

where f�x ,y� is nonlinear but the cross terms g�x1 ,y1 ,x2 ,y2�
can be either linear or nonlinear. In our model, for instance,
the functions are f�x ,y�=−�x2y+O�2�+O�3� and
g�x1 ,y1 ,x2 ,y2�=	x1+
y1+O�2�+O�3�.

The following linear transformation to complex variables:

�z1, z̄1,z2, z̄2� = C−1�x1,y1,x2,y2� , �22�

where C is the 4�4 matrix of the eigenvectors of the linear
part of Eqs. �20� and �21� �the overbar denotes complex con-
jugation�, leads us to the following diagonal system for the
two modes of oscillation:

ż1 = �
1 + i�1�z1 + a1�z1�2z1 + c1z1�z2�2 + G1�z1,z2� ,

�23�

ż2 = �
2 + i�2�z2 + a2�z2�2z2 + c2z2�z1�2 + G2�z2,z1� .

�24�

In amplitude-phase notation, the variables of the two modes
of oscillation are
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y
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FIG. 5. Simulation of two different vocal maneuvers that move the system into region 3. In both cases the spectrogram of the resulting
acoustic pressure pi is plotted. �a� Air sac pressure ps changes abruptly around 0.07 s, from 3�106 to 1.5�107 cm s−2, and sidebands appear.
Labial tensions are held constant at k1=1.1�109 s−2 and k2=8�108 s−2 ��k=3�108 s−2�. �b� Labial tension k1 changes abruptly around
0.07 s, from 1.4�109 to 9�108 s−2, and sidebands appear. Parameters k2=8�108 s−2 and ps=7.5�106 cm s−2 are held constant. �c� The
two vocal maneuvers plotted as paths in parameter space of Fig. 3. Both cases show harmonic spectral content before the change in the
control parameter �every frequency is an integer multiple of one of the two lowest frequencies�. After the change, frequencies appear that are
not integer multiples of the fundamental frequencies before. Transients not shown.

LAJE et al. PHYSICAL REVIEW E 77, 011912 �2008�

011912-6



z1 = R1 exp�i�1�, z2 = R2 exp�i�2� . �25�

Note that near the double Hopf bifurcation the terms G1,2 are
not important, and thus Eq. �23� does not depend on the
phase �2 of the second mode, because �z2�2=R2

2. Conversely,
Eq. �24� does not depend on �1 because �z1�2=R1

2. A stable
solution may exist where both modes are turned on �with
constant amplitudes�,

R1 = R10, R2 = R20, �26�

and their phases do not mix frequencies,

�1 = �1t, �2 = �2t . �27�

In this case, the transformation back to the original variables
�Eq. �22�� yields a linear superposition of the two mode fre-
quencies:

x1�t� � R10 cos��1t� + R20 cos��2t� . �28�

This is illustrated in Fig. 6 �the stationary solution in the
space of R1 ,R2�.

On the other hand, when the system is not near the Hopf-
Hopf bifurcation, the terms represented by G1,2 become im-
portant and could mix frequencies. Consider, for instance,
G1=�z1z2 and G2=�z2z1 �with � a small, perturbative param-
eter; in our model, this term would be related, for instance, to
the term x2y1 in Eq. �7� which mixes position and velocity
from different sides of the syrinx�. This will contribute a
small term with �2 in the equation for ż1, and a small term
with �1 in that for ż2. The effect will be that the mode am-
plitudes will be no longer constant, but have a perturbative
dependence on time:

R1 = R10 + R11���cos��2t� , �29�

R2 = R20 + R21���cos��1t� . �30�

Back to the original variables: now it is easy to see the way
in which the multiplication arises:

x1�t� � R1�t�cos��1t� + R2�t�cos��2t�

= �R10 + R11���cos��2t��cos��1t�

+ �R20 + R21���cos��1t��cos��2t�

= R10 cos��1t� + R20 cos��2t�

+ A0���cos��1 + �2�t + B0���cos��1 − �2�t ,
�31�

that is, the superposition of the two mode frequencies, plus
two new frequencies �sum and difference�. Similarly, other
terms within G1,2 would introduce other heterodyne frequen-
cies in the spectrum. As we go farther from the Hopf-Hopf
bifurcation, each mode amplitude will add more frequency
components �the nonstationary solution displayed in Fig. 6�.

In summary, the dynamical origin of the multiplication is
that the amplitudes of the interacting modes are no longer
constant when the system is far from the Hopf-Hopf bifur-
cation, but have a dependence on time.

V. CONCLUSIONS

In this work we analyzed the solutions of a model devel-
oped to study the acoustic interaction between the two sound
sources and between source and tract in oscine songbirds.
We restricted the model to the idealized case of the two
sound sources alone �without a vocal tract� and showed that
the subharmonic frequencies appearing in the solution’s
spectrum can be traced to the nonlinear mode-mode interac-
tion arising when both modes are active. The proposed dy-
namical scenario is compatible with the analysis of a remark-
able two-voiced sound by an oscine songbird. We conclude
that acoustic interaction between the two sides of the syrinx
must be taken into account as a possible physical mechanism
of interaction.

Since the acoustic coupling coefficients � and � both de-
pend on acoustic parameters like sound speed and air density
�16�, a possible way to test the source-source acoustic inter-
action hypothesis �acoustic coupling as the physical origin of
the interaction between the two sound sources� is to perform
a Heliox experiment in which a singing bird like the one of
Fig. 1 is recorded in a much less dense atmosphere. Heliox is
a gas mixture in which nitrogen, comprising 80% of ordinary
air, is replaced with the less dense helium. A significant
change in the spectral content �disappearance or attenuation
of subharmonic frequencies� should be observed if the inter-
action is of acoustic nature. Heliox experiments were pro-
posed to study the acoustic coupling between source and
vocal tract �16�.
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FIG. 6. Numerical integration of our model’s Eqs. �7� and �8�.
R1 and R2 are the amplitudes of the two interacting modes defined
by Eq. �25�. A simulation with parameter values near the Hopf-Hopf
bifurcation shows that both modes are turned on with constant am-
plitudes �the dot near the bottom left corner, ps=1�106 cm s−2�.
However, when the system is set far from the bifurcation �ps=1.5
�107 cm s−2�, the amplitudes of the modes R1 and R2 are not
constant, but oscillatory. The spectrogram corresponding to this
simulation is shown in Fig. 5�a� �second half�. �k=3�108 s−2.
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APPENDIX

We start with our approximated system �Eqs. �7� and �8��
and compute the third-order normal form for the Hopf-Hopf
bifurcation, keeping terms up to second order in the coupling
coefficients 	 and 
.

The matrix of the linear part of our system is

M =

0 1 0 0

− �1 �1 	 


0 0 0 1

	 
 − �2 �2

� , �A1�

where we let �1��2 in order to be able to tune the Hopf-
Hopf bifurcation. The condition for the single Hopf bifurca-
tion in the uncoupled oscillators �	=
=0� is simply �1

h

=�2
h=0. For weak coupling, the condition for the Hopf-Hopf

bifurcation �zero real part for both eigenvalues� is

�1,2
hh = �

2	


��
, �A2�

where we have defined ��=�1−�2 �assuming �1��2 with-
out loss of generality�. Notice that �1,2

hh should be perturba-
tive quantities, which is assured by requiring that

	


��
� �2

1/2. �A3�

In addition, we require every second-order term to be small.
This is the weak coupling approximation:

	


��
� �2

1/2,
	2

��
� �2,


2

��
� 1. �A4�

The four eigenvalues of M evaluated at the Hopf-Hopf bifur-

cation are �1 , �̄1 ,�2 , �̄2, where

�1 = i�	�1 +
	2 − �1
2

2	�1��
� , �A5�

�2 = i�	�2 −
	2 − �2
2

2	�2��
� �A6�

�i stands for the imaginary unit, i2=−1, and the overbar de-
notes complex conjugation�. Note that the frequencies of the
normal modes are very similar to those of the isolated sides
of the syrinx 	�1 and 	�2. The corresponding four eigenvec-
tors of M at the Hopf-Hopf bifurcation are v1 , v̄1 ,v2 , v̄2,
where

v1 = �1,�1,−
	 + i	�1


��
,−

i	�1	 − �1


��
� , �A7�

v2 = �	 + i	�2


��
,
i	�2	 − �2


��
,1,�2� . �A8�

�Note that the leading order in 	 ,
 for the eigenvectors is
only linear, although for the eigenvalues it is quadratic.� With
this we can diagonalize the system by building the matrix

of the eigenvectors C and performing the usual linear
transformation to complex variables z=C−1x, where z
��z1 , z̄1 ,z2 , z̄2� and x��x1 ,y1 ,x2 ,y2�.

After this, we compute the quadratic transformation z
=w+h2�w� to variables w��w1 , w̄1 ,w2 , w̄2� that cancels out
the quadratic terms in the diagonalized system, and explicitly
make the replacement to obtain the normal form

ẇ1 = �1w1 + A11w1�w1�2 + A12w1�w2�2, �A9�

ẇ2 = �2w2 + A21w2�w1�2 + A22w2�w2�2. �A10�

Next we change to polar variables w1,2=r1,2 exp�i�1,2� and
obtain the normal form in radial variables

ṙ1 = a11r1
3 + a12r1r2

2, �A11�

ṙ2 = a21r2r1
2 + a22r2

3, �A12�

where aij =Re�Aij�. The resulting coefficients a12 and a21 are
both first-order quantities in �	 ,
� and can be either positive
or negative, depending on the parameter values, while a11
and a22 are both definite negative and of order 1:

a11 � − 1 + O�	� + O�
� , �A13�

a12 � O�	� , �A14�

a21 � O�	� , �A15�

a22 � − 1 + O�	� + O�
� . �A16�

We finally rescale to put the system in the form proposed by
Guckenheimer and Holmes �19�, p. 397:

ṙ1 = 
1r1 + r1
3 + br1r2

2, �A17�

ṙ2 = 
2r2 + cr2r1
2 + dr2

3, �A18�

where

b =
a12

�a22�
sgn�a11� � O�	� , �A19�

c =
a21

�a11�
sgn�a11� � O�	� , �A20�

d = sgn�a11a22� = + 1. �A21�

Note that we performed a time scale change t→sgn�a11�t
that is reversing, since for our system sgn�a11�=−1.

A classification for the unfoldings of Eqs. �A17� and
�A18� is given in �19�, which depends on the signs of the
parameters d, b, c, and d−bc. Here d= +1 and d−bc� +1
+O�	2� are both positive definite. On the other hand, b and c
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can be either positive or negative. Therefore only four cases
are possible within this approximation, namely,

Case Ia Case II Case III Case IVa

b + + − −

c + − + −

The relationship between the unfolding parameters 
1 and

2 in Eqs. �A17� and �A18� and the model parameters can be
obtained by taking the real part of the eigenvalues �which
vanish at the Hopf-Hopf bifurcation�. It is given by


1 =
1

2
��1 +

��2 − �1�	2 + ��1�2 − �2�1�
2 − 2��	


��2 + �1
2�2 + �2

2�1 − �1�2��1 + �2�
� ,

�A22�


2 =
1

2
��2 +

��1 − �2�	2 + ��2�1 − �1�2�
2 + 2��	


��2 + �1
2�2 + �2

2�1 − �1�2��1 + �2�
� .

�A23�

From this we can map the path in parameter space examined
in this work, that is, �1=�2��, onto the appropriate path
in the space of the unfolding parameters �
1 ;
2�. By evalu-
ating 
1 and 
2 in �1=�2�� and then solving for 
2, it
can be shown that the path corresponding to increasing air
sac pressure, that is, increasing �, is mapped onto


2 = �1 +
2
2

��
�
1 +

2	


��
, �A24�

which is a line with slope �1 and very little offset from the
origin.

�1� M. S. Brainard and A. J. Doupe, Nature �London� 417, 351
�2002�.

�2� A. J. Doupe and P. K. Kuhl, Annu. Rev. Neurosci. 22, 567
�1999�.

�3� E. A. Brenowitz, D. Margoliash, and K. W. Nordeen, J. Neu-
robiol. 33, 495 �1997�.

�4� M. S. Fee, B. Shraiman, B. Peseran, and P. P. Mitra, Nature
�London� 395, 67 �1998�.

�5� G. B. Mindlin and R. Laje, The Physics of Birdsong �Springer-
Verlag, Berlin, 2005�.

�6� F. Goller and O. N. Larsen, J. Comp. Physiol. �A� 188, 841
�2002�.

�7� F. Goller and R. A. Suthers, Nature �London� 373, 63 �1995�.
�8� R. A. Suthers, Nature �London� 347, 473 �1990�.
�9� S. Nowicki and R. R. Capranica, Science 231, 1297 �1986�.

�10� S. Nowicki and R. R. Capranica, J. Neurosci. 6, 3595 �1986�.

�11� I. Steinecke and H. Herzel, J. Acoust. Soc. Am. 97, 1874
�1995�.

�12� P. Mergell and H. Herzel, Speech Commun. 22, 141 �1997�.
�13� T. Gardner, G. Cecchi, M. Magnasco, R. Laje, and G. B. Mind-

lin, Phys. Rev. Lett. 87, 208101 �2001�.
�14� R. Laje, T. J. Gardner, and G. B. Mindlin, Phys. Rev. E 65,

051921 �2002�.
�15� G. B. Mindlin, T. J. Gardner, F. Goller, and R. Suthers, Phys.

Rev. E 68, 041908 �2003�.
�16� R. Laje and G. B. Mindlin, Phys. Rev. E 72, 036218 �2005�.
�17� N. H. Fletcher, J. Theor. Biol. 135, 455 �1988�.
�18� R. Straneck, Canto de las Aves de Misiones I �LOLA, Buenos

Aires, 1990�.
�19� J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-

namical Systems, and Bifurcations of Vector Fields �Springer-
Verlag, New York, 1983�.

BILATERAL SOURCE ACOUSTIC INTERACTION IN A … PHYSICAL REVIEW E 77, 011912 �2008�

011912-9


