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We study the solutions of a dynamical system describing the average activity of an infinitely large

set of driven coupled excitable units. We compared their topological organization with that

reconstructed from the numerical integration of finite sets. In this way, we present a strategy to

establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by

the dynamics of its infinitely large surrogate. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4874015]

Many fields of physics deal with the macroscopic descrip-

tion of large systems, composed by N interacting mem-

bers. In some cases, it is possible to address them in terms

of a mean field theory, designed to describe the parame-

ters accounting for the average behavior of the system.

This approach requires the study of a surrogate problem,

consisting of an infinite number of interacting elements.

In this work, we study the macroscopic dynamic of a

system of N non-linear interacting units. For that, we use

topological tools in order to compare the system of N
units with its surrogate with infinite elements. We report,

for a particular problem, a minimum number of units

required for the two systems to be topologically

equivalent.

I. INTRODUCTION

The study of nonlinearly coupled units has a long and

rich history.1 An important contribution to this field was a

model introduced by Kuramoto,2 which consists of a set of

coupled oscillators, each one described in terms of its phase.

In this model, the units are coupled through a sinusoidal

function of the phase difference between the interacting

units. Extensive work has been devoted to the study of this

system.3 Recently, Ott and Antonsen showed that this model

presents a stable invariant manifold in the limit of infinitely

many units.4 In this way, it was shown that the average

dynamics of the system can be described in terms of a low

dimensional dynamical system. Strogatz made an in-detail

analysis of a closely related set of equations (periodically

forced Kuramoto model)5 as well as Antonsen et al.6 In all

these approaches, the final results are reported in the limit of

an arbitrarily large number of interacting units.

In many situations where a finite number of units are

involved, an infinite limit is studied in order to gain an intu-

ition on the expected dynamics. It is useful then to have tools

that allow us to estimate the minimum size of a finite popula-

tion such that its behavior can be approximated by a surro-

gate problem with infinite number of units. In this work, we

address this issue in the framework of a particular problem:

The dynamics of a periodically driven set of coupled excita-

ble elements. In the limit of infinitely many of them, the av-

erage dynamics of this system was shown to be described by

a set of three ordinary differential equations.7 For three

dimensional dynamical systems, there is a strategy that

allows to establish the equivalence between flows: The topo-

logical equivalence between their periodic orbits.8–10 In this

work, we analyze the solutions of the dynamical system

describing the behaviour of the complex Kuramoto order pa-

rameter of an infinitely large set of driven, coupled, excitable

units, for different parameters. Then we studied numerically

finite size populations and compared the topological organi-

zation of the periodic solutions obtained in both systems.

II. THE MODEL

A modified version of the Kuramoto’s model was previ-

ously studied by Alonso et al.11 in order to describe the inter-

action of two sets of phase oscillators: One presenting

periodic behavior and the other one, excitability. The dynam-

ics of each unit is given by

_h
ðrÞ
i ¼xðrÞi �cðrÞi sinðhðrÞi Þþ

X2

r0¼1

Krr0

Nðr0Þ

XNðr0Þ
j¼1

sinðhðr
0Þ

j �hðrÞi Þ; (1)

where r indicates the different sets (r¼ 1 driving set, r¼ 2

driven set), the integers i ¼ 1; 2; :::;N¼: Nðr¼1Þ þ Nðr¼2Þð Þ
index the oscillators, and xðrÞi their natural frequency. The

dynamics of each unit is described by its phase hðrÞi ðtÞ. The

parameter cðrÞi plays an important role in the dynamics of

each uncoupled unit: all oscillators meeting the condition

jxðrÞi =cðrÞi j � 1 become an excitable oscillator. Finally, the

parameter Krr0 ðr0 ¼ 1; 2Þ denotes the coupling strength

between populations. An order parameter is defined to mea-

sure the coherence of each set

zr ¼
1

NðrÞ

XNðrÞ
j¼1

eihðrÞj : (2)

In the N !1 limit, the dynamics of the system can be

described by a density probability function f ðrÞðh;x; tÞ,
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which is continuous over its variables. The complex order

parameter of each set is now rewritten using this distribution

zr ¼
ð1
�1

ð2p

0

eihf ðrÞðh;x; tÞ dh dx: (3)

Assuming that the coefficients of the Fourier series of

f ðrÞðh;x; tÞ in h can be expressed as f ðrÞn ðx; tÞ ¼ arðx; tÞ½ �n
(Ott’s ansatz4), and taking the natural frequencies of both

sets from a Lorentzian distribution gðrÞðxÞ ¼ 1
p

DðrÞ

x�xðrÞ
0

ð Þ2þ DðrÞð Þ2
, the order parameter can be written as

zrðtÞ ¼ a�rðx
ðrÞ
0 � iDðrÞ; tÞ. Here, xðrÞ0 represents the median

frequency and DðrÞ the spread of the distribution. We set

cð1Þ � 0;K12 � 0 in order to describe the driving population.

In this N !1 limit, the system presents a low dimensional

invariant manifold given by

_a1 ¼ �iðxð1Þ0 � iDð1ÞÞa1 þ
K11

2
ð1� ja1j2Þa1

_a2 ¼ �iðxð2Þ0 � iDð2ÞÞa2 þ
c
2
ð1� a2

2Þ þ
K21

2
ða1 � a�1a

2
2Þ þ

K22

2
ð1� ja2j2Þa2:

8><
>: (4)

In order to simplify the notation, we wrote ar ¼ aðrÞðxðrÞ0 � iDðrÞ; tÞ and cð2Þ¼: c. For both populations, a complex notation

is used for the order parameter z�rðtÞ ¼ ar ¼ qrðtÞei/rðtÞ. We assume that the driving population presents a collective steady

state, i.e., the magnitude of the order parameter is fixed. The whole problem, therefore, can be written as a 3D-system11

q1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Dð1Þ

K11

s

_/1 ¼ �xð1Þ0

_q2 ¼ �Dð2Þq2 þ
c
2

cos /2ð Þ 1� q2
2

� �
þ K22q2

2
1� q2

2

� �
þ K21q1

2
1� q2

2

� �
cos /1 � /2ð Þ

q2
_/2 ¼ �xð2Þ0 q2 �

c
2

sin /2ð Þ 1þ q2
2

� �
þ K21q1

2
1� q2

2

� �
sin /1 � /2ð Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

(5)

III. RESULTS

Solutions of Eq. (5) were investigated numerically.

Following previous works,11 we set the parameters at values

that allowed us to find a rich variety of solutions ranging

from periodic to chaotic ones for the driven set order param-

eter z2(t).12–16 An Arnold’s tongues diagram was obtained by

varying the frequency of the driving set ðxð1Þ0 Þ and the

amplitude of its forcing to the excitable population (K21). In

this phase space, we searched for orbits of periods 1, 2, 3, 4,

and 5. The regions of parameters space where the different

solutions are found are color coded in Figure 1. All the

tongues were labeled with the period number (in terms of the

driving-set period) and a subscript number that allows to

distinguish each tongue with the same period.

FIG. 1. (a) Arnold tongues diagram for the 3D-system. The fixed parameters used in our simulations are xð2Þ0 ¼ 2:90, D(1)¼D(2)¼ 1.00, c¼ 2.96, K22¼ 6.00,

and K11¼ 8.00. A central 2-periodic tongue (named 21, blue) is enclosed by two tongues of period 4 (41 higher and 42 lower, in yellow). Another orbit of

period 4 (43) appears between two tongues of period 5 (51 higher and 52 lower, in gray). Finally, two tongues of period 3 (31 higher and 32 lower) are shown in

green. (b) Detail of the map.

023112-2 G. C. Dima and G. B. Mindlin Chaos 24, 023112 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

186.217.7.205 On: Tue, 06 May 2014 12:35:30



A very interesting strategy was proposed by Gilmore

and Lefranc10 in order to compare the flows generated by

three dimensional non lineal systems: The topological

description of their periodic orbits.

Since the topological structure of the solutions obtained

for parameters within each tongue is invariant, we selected a

unique periodic orbit as a representative of the whole tongue

where the orbit is found. There are many ways to characterize

the topological features of periodic solutions of a three dimen-

sional dynamical system: The way in which they link with

other solutions, their knot types, etc. Among those stands, the

relative rotation rates (RRRs), presented by Solari and

Gilmore.17 For each pair of points (initial conditions) in the

Poincar�e section, the RRR describes the relative torsion

between the trajectories starting from that pair of points at

which the solutions meet the section. A positive/negative sign

is added in the index, in order to indicate if the crossings of

the curves obey the left-hand rule: clockwise twists are con-

sidered negative while counterclockwise twists are considered

positive. These numbers applied to the same periodic orbit

carry the name of self relative rotation rate (SRRR) and give

information about deformations under the flow in the neigh-

borhood of the orbit. The RRR and SRRR present robustness

not only under coordinate transformations but also under

changes in the control parameter as long as the orbits exist.

To compute these rates, we proceed as follows.10 The

time series of the stationary state A¼Re(z2(t)) is plotted in a

fixed time window corresponding to a full period s. Then, a

second copy of the periodic orbit (B) is made in the same plot,

but shifted one period of the driving set (i.e., B ¼ Reðz2ðtþ

sð1ÞÞÞ with sð1Þ ¼ 2p=xð1Þ0 ). Half of the sum of all crossings of

both curves, over the number of periods of the driving set that

fit in the window (i.e., s=sð1Þ), is the relative rotation rate num-

ber for that pair of initial conditions in the Poincar�e section.

The standard notation of this index is SRRR(1,2), where the

numbers label the initial conditions. The process is repeated

using both A ¼ Reðz2ðtþ ðn� 1Þsð1ÞÞÞ and B ¼ Reðz2ðtþ
ðm� 1Þsð1ÞÞÞ, with n;m ¼ f1; 2; ::; s=sð1Þg and n<m (since

SRRR(n,m)¼ SRRR(m,n) and SRRR(m,m)¼ 0 by definition). The

set of SRRR for each orbit is obtained by counting the time

each SRRR(n,m) is repeated, displayed as exponents. In Figure

2, we obtained SRRR42
¼ ð� 1

2
Þ8ð� 1

4
Þ404, meaning ð� 1

2
Þ

occurs 8 times while ð� 1
4
Þ and 0 (corresponding to RRR(m,m))

repeat four times each. In order to simplify the notation,

only the ratios of the numbers are presented: SRRR42

¼ ð� 1
2
Þ4ð� 1

4
Þ0. The rationale behind this procedure is that all

the crossings between the time series in the plot correspond to

crossings in the bidimensional projection of the three dimen-

sional phase space Re(z), d
dt ReðzÞ; t:modðsdrivingÞ. In this

embedding, all crossings obey the left-hand rule resulting on

negative indexes.

We test the hypothesis that, for a sufficiently large num-

ber of N phase oscillators, the topology of a set of periodic

orbits in the complete system matches the topology of the

averaged system. By fixing the parameters as in the averaged

system, we compute the SRRR for solutions presented by

sets of different number of oscillators (see Table I).

For N¼ 500 (the smallest set considered in our study),

non periodic solutions were found at parameter values where

the infinite system presented periodic solutions. Four

FIG. 2. Computing the SRRR of the orbit 42 in the averaged system by looking at the time series. (a) A full period of the temporal evolution of Re(z2) is plotted

in a fixed window s (black). Then the same plot is shifted by one driving-set period sð1Þ (red). The number of crossings (blue arrows) is counted. The SRRR for

this pair of initial conditions in the Poincar�e section is calculated by dividing half of the total number of crossings by the period number: SRRRð1;2Þ ¼ � 1
2
. This

procedure is repeated by shifting both plots, one at a time, n times sð1Þ, where n ¼ 1; 2; :::; s=sð1Þ (4 in this case). Since these indexes are symmetrical and

SRRR(i,i)¼ 0 by definition, 6 out of 16 initial conditions must be analyzed. (b) SRRRð1;3Þ ¼ � 1
4
, (c) SRRRð1;4Þ ¼ � 1

2
, (d) SRRRð2;3Þ ¼ � 1

2
, (e) SRRRð2;4Þ ¼ � 1

4
,

(f) SRRR(3,4)¼�1/2. The topological index is displayed by noting the number of times each case is repeated (as exponential numbers)

SRRR42
¼ � 1

2

� �8 � 1
4

� �4
04, or in a simplified notation (“reducing the exponents”): SRRR42

¼ � 1
2

� �2 � 1
4

� �
0.
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periodic orbits, however, were present in our simulations.

The topology of those coincides with the orbits of the same

periods in the averaged system, yet they are found at differ-

ent parameter values (see first row, last column in Table I),

The system of N¼ 1000 also presents non periodic

orbits at parameter values where the infinite system displays

periodicity (see column 6, rows 5 and 7). Also in this case,

we found periodic solutions. The period 2, 3, and 4 solutions

of the N¼ 1000 set of oscillators have the same topology

as their infinite counterpart. For this number of units, we

encounter solutions of higher period as well.

Progressive changes are found using N¼ 2000 (see col-

umn 5 in Table I), but it is for N¼ 3000 that we found an

equivalence between the finite set and the infinite limit case.

FIG. 3. Comparison of the evolution of the order parameter for both the averaged system (right) and the finite system with N¼ 3000 (left) for each analyzed orbit.

TABLE I. Self-relative rotation rates for both the averaged system and the complete system using different numbers of units.

Orbit xð1Þ0 ;K12

� �
N !1 N¼ 3000 N¼ 2000 N¼ 1000 N¼ 500

21 (5.18, 2.79) � 1
2

0 � 1
2

0 � 1
2

� �3
0 � 1

3

� �4 � 2
3

� �2
0ð Þ3 Non periodic

31 (5.64, 2.57) � 1
3

� �2
0 � 1

3

� �2
0 � 1

3

� �2
0 � 1

4

� �3
0 � 1

4

� �3
0

32 (5.00, 3.21) � 2
3

� �2
0 � 2

3

� �2
0 � 3

5

� �4
0 � 1

2
0 � 1

2
0

41 (5.00, 1.88) � 1
4

� �3
0 � 1

4

� �3
0 � 1

5

� �4
0 Period 6 Non periodic

42 (5.35, 2.8532) � 1
2

� �2 � 1
4

0 � 1
2

� �2 � 1
4

0 Non periodic Non periodic Non periodic

43 (5.40, 3.32) � 1
2

� �2 � 3
4

0 � 1
2

� �2 � 3
4

0 � 1
2

0 � 1
2

0 � 1
2

0

51 (5.43, 1.85) � 1
5

� �4
0 � 1

5

� �4
0 � 1

4

� �4 � 1
2

0 Non periodic Non periodic

52 (5.60, 2.90) � 2
5

� �4
0 � 2

5

� �4
0 � 2

5

� �4
0 � 1

3

� �2
0 � 1

3

� �2
0
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Notice that the first match between the topology of a

finite simulation and the infinite limit is achieved for

N¼ 2000, where a period five and a period three solutions

are equivalent to their counterpart of the infinite set. That

match is preserved as N is increased to N¼ 3000. It is likely

that once an equivalence is achieved, it will not be lost as N
is further increased.

For the finite set of solutions in this study (orbits up to

period 5), sets of units larger or equal to 3000 present the

same topology as the solutions of the infinitely large system.

Beyond the matches between the indexes of the infinite set

and the numerically simulated finite system of 3000 ele-

ments, in Figure 3, we show the projection of the solutions in

two dimensions. Solutions of period 2, 3, 4, and 5 are

displayed in (a), (b), (c), (d), (e), (f), (g), and (h), respec-

tively. In all cases, the solutions of the infinite system corre-

spond to the right part of the figure. On the other hand, small

sets present solutions that are topologically inequivalent to

the ones displayed by the infinite set. In Figure 4, we show a

non periodic trajectory for parameter values at which the in-

finite set presents a period 2 solution (a). For N¼ 1000, and

N¼ 2000, periodic solutions are found but yet, of a different

periodicity (b) and (c).

It is interesting to explore the role of D(2) in these results,

since it describes the dispersion of the parameters of the

coupled units being driven. If all units present similar features

(i.e., D(2) small), it is reasonable to expect synchronization

among the units, which will behave as one unit with its param-

eters corresponding to the median of the distribution (assum-

ing xð2Þ0 meets the excitability condition). On the contrary,

large values of D(2) might lead to a more complex scenario,

with many units presenting autonomous oscillations and many

other units displaying autonomous excitability.

In order to test this hypothesis, we performed a system-

atic study, where different populations of units were driven.

In each of the numerical experiments, the driven population

was chosen to present parameters compatible with distribu-

tions of different D(2) values. Here, we present results for

values of D(2) smaller than 1 (the value chosen for the popu-

lation described above) and values of D(2) larger than 1. For

large D(2) values, the system presents simple dynamics (pe-

riod 1), both in the simulation of a large set of units, as well

as, in the numerical exploration of the equations describing

the average dynamics in the infinite limit. The values

explored were D(2)¼ 2.0, D(2)¼ 4.3, and D(2)¼ 18.2, corre-

sponding to 40%, 30%, and 0.1% of the units displaying

excitability before being driven, respectively.

For smaller values of D(2), we recovered a complex

structure of subharmonic responses in the analyzed region of

the ðxð1Þ0 ;K12Þ parameter space (see Figure 5). We analyzed

numerically populations with D(2)¼ 0.019 and D(2)¼ 0.168,

which correspond to 90.13% and 60.04% of the units dis-

playing excitability before being forced. The results are sum-

marized in Tables II and III.

FIG. 4. Dynamics of the order parameter for ðxð1Þ0 ;K12Þ ¼ ð5:18; 2:79Þ using

different numbers of excitatory units. (a) For N¼ 500, a non periodic structure

is found. (b) For N¼ 1000, a 3-period orbit is displayed and (c) for N¼ 2000,

a 4-period orbit was found. All these orbits present a different topology than

their counterpart in the surrogate system which is achieved for N¼ 3000 (d).

FIG. 5. Arnold tongues diagram for the 3D-system using D(2)¼ 0.019. From

bottom to top: A period 5 orbit tongue in gray (named 51), a period 4 orbit

tongue in yellow (41) followed by a green tongue (period 3, 31) and another

period five tongue (52). A central period 2 orbit in blue (21) is preceeded by

a zone with two period 5 tongues (53 lower and 54 higher) and two tongues

with period 3 and 4 (32 and 42).

TABLE II. Self-relative rotation rates for both the averaged system and the

complete system using different numbers of units. In this case, we set

D(2)¼ 0.019 in order to have 90.13% excitable units in the uncoupled

system.

Orbit xð1Þ0 ;K12

� �
N !1 N¼ 3000 N¼ 2000 N¼ 1000 N¼ 500

21 (5.60, 3.26) � 1
2

0 � 1
2

0 � 1
2

0 � 1
2

0 � 1
2

0

31 (6.99, 3.40) � 1
3

� �2
0 � 1

3

� �2
0 � 1

3

� �2
0 � 1

3

� �2
0 � 1

3

� �2
0

32 (6.21, 4.36) � 2
3

� �2
0 � 2

3

� �2
0 � 2

3

� �4
0 � 3

5

� �4
0 � 3

5

� �4
0

41 (5.19, 1.82) � 1
4

� �3
0 � 1

4

� �3
0 � 1

4

� �3
0 � 1

4

� �3
0 � 1

4

� �3
0

42 (6.05, 4.405) � 3
4

� �3
0 � 3

4

� �3
0 � 3

4

� �3
0 � 2

3

� �3
0 � 2

3

� �3
0

51 (6.95, 2.31) � 1
5

� �4
0 � 1

5

� �4
0 � 1

5

� �4
0 � 1

5

� �4
0 � 1

5

� �4
0

52 (6.95, 3.82) � 2
5

� �4
0 � 2

5

� �4
0 � 2

5

� �4
0 � 2

5

� �4
0 Period 8

53 (6.95, 4.83) � 3
5

� �4
0 � 3

5

� �4
0 Period 7 Period 9 Period 11

54 (6.95, 5.40) � 4
5

� �4
0 � 4

5

� �4
0 � 3

4

� �3
0 Period 7 Non periodic
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As in the exampled described above (D(2)¼ 1, resulting

on a rate of 46.53% of the units presenting excitability), we

compared the topological features of the average system

computed by simulating the coupling between N units, with

the topology of the solutions of the equations describing the

averaged dynamics in the infinite limit. As expected, when

the system is more homogeneous, it is easy to reach synchro-

nization among the units, and, therefore, with a smaller num-

ber of coupled units, the system behaves as the infinite limit

problem.

In the case of D(2)¼ 0.168, for N¼ 500, none of the orbits

present the same topology as the averaged system.

For N¼ 2000, all the studied orbits but three behave as the in-

finite limit approximation. In the case of D(2)¼ 0.019, for

N¼ 2000, only two orbits have not yet recovered the topology

of the infinite limit. In this case with as low as N¼ 500, we

get four orbits with the same topology as the infinite case.

In summary, the dispersion of the parameters correlates

with the number of units necessary to use in order to recover

the average properties of an infinite-sized system.

IV. DISCUSSION AND CONCLUSIONS

In the last few years, there were important advances in

the understanding of large systems of globally coupled phase

oscillators. Particularly helpful in this program was the study

of the infinite size limit: A surrogate problem where, instead

of a large number of units, one studies the average properties

of a set of size infinity. In a variety of problems where the

units are coupled sinusoidally,7,13 in this limit, the dynamics

was found to display low dimensional behavior.

We used topological tools to compare the low dimen-

sional dynamics presented on average by a large system of

coupled forced excitable units, with the behavior of its infi-

nite size surrogate system.

In order to do so, we studied numerically different sets

of coupled, forced excitable units, and found than N¼ 3000

units were enough to obtain the same topological structure of

the flow than in the infinite size problem. To establish this

equivalence, we looked up the topological organization of

periodic orbits of period five and lower. The rationale behind

requesting equivalence for orbits of low period is that

experimentally, it is difficult to reconstruct the topological

features of higher periodic orbits.18 Moreover, it has been

shown that optimal orbits in flows are found in lower peri-

ods.19 In any case, the pertinence of approximating a finite

set with its infinite size surrogate will depend on the experi-

mental situation.

In this work, for the explored range of parameters, we

found that the dynamics of a few thousand of driven,

coupled, excitable units can be adequately approximated by

a surrogate of infinite size. This allows us to work with a low

dimension system, describing its averaged dynamics, capable

of reflecting the same features as the finite system. For dif-

ferent problems, and specially depending on the studies of

their orbits, the number of units of the finite set that can be

approximated in this way will change. Solutions displaying

branches that live closely in the phase space are likely to

demand a larger N to be well approximated by the solutions

of the infinite system. We also found in our numerical explo-

rations that the larger the parameter dispersion, the larger the

number of units are necessary to achieve the features found

in the infinite system surrogate. This work presents a rigor-

ous strategy to deal with the pertinence of approximating

finite sets by infinitely large ones.

ACKNOWLEDGMENTS

This work was supported by Conicet and the University

of Buenos Aires.

1A. T. Winfree, Geometry of Biological Time, 1st ed. (Springer, 1980).
2Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer,

1984).
3A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: An
Universal Concept in Nonlinear Sciences (Cambridge University Press,

2001).
4E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).
5L. M. Childs and S. H. Strogatz, Chaos 18, 043128 (2008).
6T. M. Antonsen, R. T. Faghih, M. Girvan, E. Ott, and J. Platig, Chaos 18,

037112 (2008).
7L. M. Alonso and G. B. Mindlin, Chaos 21, 023102 (2011).
8G. B. Mindlin, X. Hou, H. Solari, R. Gilmore, and N. B. Tufillaro, Phys.

Rev. Lett. 64(20), 2350 (1990).
9G. B. Mindlin, R. Lopez-Ruiz, R. Gilmore, and H. Solari, “Horseshoe

implications,” Phys. Rev. E 48, 4297 (1993).

TABLE III. Self-relative rotation rates for both the averaged system and the complete system using different numbers of units. In this case, we set

D(2)¼ 0.1675 in order to have 60.04% excitable units in the uncoupled system.

Orbit xð1Þ0 ;K12

� �
N !1 N¼ 3000 N¼ 2000 N¼ 1000 N¼ 500

21 (5.60, 3.26) � 1
2

0 � 1
2

0 � 1
2

0 Period 9 Period 7

31 (6.99, 3.40) � 1
3

� �2
0 � 1

3

� �2
0 � 1

3

� �2
0 � 1

3

� �2
0 Non periodic

32 (6.21, 4.36) � 2
3

� �2
0 � 2

3

� �2
0 � 2

3

� �4
0 Period 7 Period 7

41 (5.19, 1.82) � 1
4

� �3
0 � 1

4

� �3
0 � 1

4

� �3
0 � 1

4

� �3
0 Period 6

42 (6.05, 4.405) � 3
4

� �3
0 � 3

4

� �3
0 Period 16 � 2

3

� �3
0 Period 8

51 (6.95, 2.31) � 1
5

� �4
0 � 1

5

� �4
0 � 1

5

� �4
0 � 1

5

� �4
0 Period 6

52 (6.95, 3.82) � 2
5

� �4
0 � 2

5

� �4
0 � 2

5

� �4
0 � 1

3

� �2
0 � 1

3

� �2
0

53 (6.95, 4.83) � 3
5

� �4
0 � 3

5

� �4
0 Period 7 Period 15 Period 23

54 (6.95, 5.40) � 4
5

� �4
0 � 4

5

� �4
0 � 3

4

� �3
0 Non periodic � 2

3

� �2
0

023112-6 G. C. Dima and G. B. Mindlin Chaos 24, 023112 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

186.217.7.205 On: Tue, 06 May 2014 12:35:30

http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1063/1.3049136
http://dx.doi.org/10.1063/1.2952447
http://dx.doi.org/10.1063/1.3574030
http://dx.doi.org/10.1103/PhysRevLett.64.2350
http://dx.doi.org/10.1103/PhysRevLett.64.2350
http://dx.doi.org/10.1103/PhysRevE.48.4297


10R. Gilmore and M. Lefranc, The Topology of Chaos (Wiley, Hoboken,

2002).
11L. M. Alonso, J. A. Alliende, and G. B. Mindlin, Eur. Phys. J. D 60(2),

361 (2010).
12P. So and E. Barreto, Chaos 21, 033127 (2011).
13P. So, T. B. Luke, and E. Barreto, Physica D 267, 16 (2014).
14T. Yang, B. R. Hunt, and E. Ott, Phys. Rev E 62, 1950 (2000).

15P. S. Skardal, D. Taylor, and J. G. Restrepo, Physica D 267, 27 (2014).
16G. Barlev, T. M. Antonsen, and E. Ott, Chaos 21, 025103 (2011).
17H. G. Solari and R. Gilmore, Phys. Rev. A 37, 3096–3109 (1988).
18G. B. Mindlin, H. G. Solari, M. A. Natiello, R. Gilmore, and X. Hou,

J. Nonlinear Sci. 1(2), 147 (1991).
19T. H. Yang, B. R. Hunt, and E. Ott, Phys. Rev. Lett. 62(2), 1950

(2000).

023112-7 G. C. Dima and G. B. Mindlin Chaos 24, 023112 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

186.217.7.205 On: Tue, 06 May 2014 12:35:30

http://dx.doi.org/10.1140/epjd/e2010-00225-2
http://dx.doi.org/10.1063/1.3638441
http://dx.doi.org/10.1016/j.physd.2013.04.009
http://dx.doi.org/10.1103/PhysRevE.62.1950
http://dx.doi.org/10.1016/j.physd.2013.01.012
http://dx.doi.org/10.1063/1.3596711
http://dx.doi.org/10.1103/PhysRevA.37.3096
http://dx.doi.org/10.1007/BF01209064

