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In this work we present an analysis of the dynamics displayed by a simple bidimensional model of
labial oscillations during birdsong production. We show that the same model capable of generating
tonal sounds can present, for a wide range of parameters, solutions which are spectrally rich. The
role of physiologically sensible parameters is discussed in each oscillatory regime, allowing us to
interpret previously reported data. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3041023�

Birdsong has become an animal model system for the
study of learned vocalizations with remarkable parallels
to human vocal development and sound production
mechanisms. For this reason much of the research in this
field focuses on the neural basis for motor control and
learning. Yet, behavior emerges from the interaction be-
tween the central nervous system and its peripheral tar-
get organs. In this work we show that the most widely
studied songbird, i.e., the Zebra finch, can benefit from
nontrivial dynamical properties of its vocal organ to
achieve distinctive acoustic features in its song. This work
illustrates the need to address simultaneously questions
on central motor control and peripheral mechanisms in
order to unveil how complex behavior might be achieved.

I. INTRODUCTION

Songbirds are known as an animal model for learning:
they require the exposition to a tutor and practicing in order
to achieve the proper conspecific songs.1 For this reason,
most of the research in birdsong production focuses on the
neural circuitry necessary for its production and acquisition.
Yet, behavior emerges from the interaction between a ner-
vous system, a peripheral one, and the environment. Interest-
ingly enough, the avian vocal organ, called the syrinx, pre-
sents strong fingerprints of nonlinearities and therefore, the
way in which simple physiological instructions will be trans-
duced into sound is not obvious.

In the last years, a number of models have been pro-
posed in order to integrate the large body of experimental
work2,3 with the expected basic mechanical processes in-
volved in birdsong production.4–6 In this way, a picture starts
to emerge in which the roles of different muscles used by a
singing bird are unveiled.

The basic mechanism of birdsong production resembles
the generation of voiced sounds by humans: the expiratory
airflow can drive sustained oscillations of the membranes
�vocal folds in humans and labia in birds�.7,8 Therefore, the
models of birdsong production aim at unveiling the main
mechanisms and effects responsible for the dynamics of this
valve. These models are implemented mathematically, and
the synthetic sounds generated by them are compared with

the data. They are realistic enough to be taken as an accept-
able tutoring sound by juveniles in controlled experiments.9

Nonlinearities in these models can arise as nonlinear restitu-
tion forces, dissipative forces that enter during collision be-
tween labia, or the dependence of the interlabial pressure
with the labial dynamics. If the internal structure of the os-
cillating labia which modulate the airflow is taken into ac-
count, the dimensionality of the models is large enough to
display chaotic solutions.7,10

Low dimensional models, on the other hand, have been
used to synthesize tonal sounds like the ones produced by
Canaries �Serinus canaria� or Northern cardinals �Cardinalis
cardinalis�.

Yet, some birds, such as the Zebra finch �Taeniopygia
guttata� produce spectrally rich sounds. In Fig. 1�a�, a repre-
sentative song of a Zebra finch is displayed.11 Some syllables
are nearly tonal �the fundamental frequency is dominant�,
while in others, the energy is distributed among several
supra-harmonics of the fundamental frequency. Recently it
was shown that the later sounds have a pulse tone register,
and each acoustic pulse is related to a rapid opening of the
labia followed by a long closure of the valve to the airflow.12

A recent work explored the existence of a relationship
between the fundamental frequency and the richness of the
spectrum of the syllables in the Zebra finch song. It was
found that over a wide range of fundamental frequencies, the
higher the value of the fundamental frequency, the poorer its
spectral content.13 By plotting the spectral content index, a
number describing the centroid of the spectrum of an acous-
tic signal14� as a function of its fundamental frequency, it was
found that for several birds, and all the syllables within their
repertoires with a well-defined fundamental frequency, the
data were clustered around a simple curve. This suggests the
existence of a common mechanism behind the generation of
acoustically different sounds.

Beyond high frequency sounds �almost tonal�, and spec-
trally rich harmonic stacks �with fundamental frequencies
ranging from 500 to 800 Hz�, the Zebra finch song includes
noisy notes, for which the computation of a fundamental
frequency is not trivial. It was shown that many of those
syllables involve the use of the two acoustically independent
sound sources that songbirds have.15 In these cases, the left
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and right sides produce acoustically independent sounds with
different modulation patterns,15 giving rise to very complex
sounds. These syllables are left aside of our study, which
focuses in the question of how a single sound source can
generate both tonal sounds and harmonically rich sounds
with a well defined fundamental frequency. Recently, the
harmonic-to-noise ratio16 was used to quantify animal
sounds which are a mixture of regular components and noisy
ones. In the problem of the dog barking, for example, the
regular part is likely to be associated with the oscillation of
the vocal folds, while the noisy ones are likely to be either
due to chaotic motion of the vocal fold tissue17 or turbulence
of the air. In the Zebra finch, these effects might play a role,
as well as the acoustical effects emerging from the interac-
tion between the sounds generated by the two independent
vocal sources. More work is needed to unveil the processes
involved in Zebra finch noisy notes.

From a dynamical point of view, low dimensional mod-
els can present periodic oscillations which are spectrally very
rich. The aim of this work is to revisit a simple �low dimen-
sional� model for birdsong production, focusing on the
search of spectrally rich oscillations. We describe the global
bifurcations that give rise to such solutions, and inspect un-
der what conditions they can occur. Bifurcation diagrams in
terms of physiological relevant parameters are described, and
the acoustic features of the sounds associated with those so-
lutions are discussed.

This work is organized as follows. Section II presents
the model. Bifurcation diagrams are discussed in Sec. III.
The sounds which can be generated by the described dynam-
ics are presented in Sec. IV. The last section contains our
discussion and conclusions.

II. THE MODEL

One of the first low dimensional models for the dynam-
ics of a membrane in an airflow was proposed by Titze7 and

further studied by others.18 According to this model, the mo-
tion of the oscillating tissues is represented as a surface wave
propagating in the direction of the airflow. This wave is mod-
eled in terms of two basic modes: a lateral displacement of
the tissues, and a flapping like oscillation responsible for an
out of phase oscillation of the top and bottom parts of the
membranes �see Fig. 2�.

The simplest assumption for the existence of self-
sustained oscillations is that through a particular phase dif-
ference between these modes the system is capable to gain
energy in each cycle. The obvious way to accomplish this is
to have a convergent profile when the labia move away from
each other, and a divergent when they approach. Instead of
this configuration, having a less divergent profile when open-
ing than when closing, provides the same effect with not
such a dramatic change in the orientation of the profiles �see
Fig. 2�b��. This configuration of profiles allows to have a
higher interlabial pressure when the labia are moving apart.
In this way, this nonuniform force acting on the membranes
allows a net gain of energy in each cycle. The whole move-
ment can be visualized as an upward propagating wave on
the membrane.

In order to describe this motion, one can call a1 �a2� the
half separation between the lower �upper� edges of the labia
�see Fig. 2�a��. Under the hypothesis of a mucosal wave mo-
tion on a membrane, these half separations can be written in
terms of the midpoint position of a membrane �x� and its
velocity �y�. If the time that takes the wave to propagate half
the vertical size of the labia is �, the half separations between
the edges of the membranes will satisfy

a1 = a01 + x + �y , �1�

a2 = a02 + x − �y , �2�

where a01 and a02 are the half separations at the rest
�nonoscillating� state. Computing the average pressure be-
tween the labia,7 one obtains
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FIG. 1. �a� Sonogram of a typical bout of a Zebra finch. Two segments of
the song are analyzed. �b� High fundamental frequency waves are almost
tonal, as can be seen directly in the sinusoidal shape of the wave and also in
the absence of supra-harmonics in the fast Fourier transform �FFT� analysis.
�c� Sounds of low fundamental frequencies are spectrally rich as can be seen
in the FFT analysis, where the supra-harmonics have more energy than the
fundamental.

a02

a01
psub

x

(a) (b)a2

a1

FIG. 2. Flapping model for the labia. �a� The dynamics of the labia is
described in terms of the displacement of the midpoint position x. The
dashed lines indicate the prephonatory position of the labia, where a01 and
a02 account for the lower and upper distances from the medial point of the
tract, respectively. The solid lines represent the surface wave of mucosal
tissue traveling upward, where a1 �a2� is the half separation between the
lower �upper� edges of the labia. In �b� we show the assumed movement of
the labia during one cycle of oscillation, which allows self-sustained oscil-
lations to exist: a less divergent profile when the labia move away from each
other and a more divergent profile when they approach. The case displayed
corresponds to �a�0.
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pav = psub�1 −
a2

a1
� , �3�

where psub stands for the sublabial pressure. Now it is pos-
sible to go beyond the kinetics of the labia to the dynamics.
The equations of motion for the variable x is derived taking
into account dissipation, elastic restitution, nonlinear dissipa-
tion, and read

dx

dt
= y , �4�

dy

dt
= �1/m��− k�x�x − ��y�y − cx2y + f0

+ alabpsub� �a + 2�y

a01 + x + �y
�� . �5�

The first term corresponds to a nonlinear restitution force,
where k�x�=k1+k2x2. The second term accounts for dissipa-
tion, with ��y�=�1+�2y2. The third term is also a nonlinear
dissipation that becomes relevant as x takes large values,
corresponding to large departures from the rest position. In
this way, this position dependent nonlinear dissipation serves
to model collisions between labia or with containing walls,
either one bounding their motions. The term f0 accounts for
a force that is independent of the labial dynamics, and serves
to model active gating.5,6 Finally, the last term describes the
force f lab acting on the labium due to the interlabial pressure:
f lab=alabpav, where �a=a01−a02. A slightly simplified ver-
sion of this model �without nonlinear restitution� was used in
Ref. 4 to synthesize canary song. In order to do so, the dy-
namics of x is used to emulate the modulations of airflow
that are responsible for the generation of sound waves. To
achieve acoustically realistic sounds, these pressure fluctua-
tions are further filtered emulating the action of a vocal
tract.4,13 For the case of Zebra finches, this enhances frequen-
cies of the sound source in the range of 3–6 kHz.13

The model was further studied by Lucero18 to investigate
oscillation hysteresis. It is interesting to notice that the exis-
tence of nonlinear components in the restitution forces for
labia was recently found to play an important role in the
frequency control of song by a suboscine bird,19 and quali-
tatively increases the dynamical possibilities of the model.
With its simplicity, this model allowed to identify parameters
necessary to account for important acoustic features found in
birdsong, such as the temporal evolution of the fundamental
frequencies of different syllables.4,6 The pressure psub was
identified as the parameter responsible for the onset of the
membrane oscillatory motion, and for several oscine birds, k1

was found to be responsible for the tension of the oscillating
labia, which contributes to the value of the fundamental fre-
quency of the uttered sound.

III. BIFURCATION DIAGRAMS

We start our analysis of the dynamics presented by this
model with an inspection of its fixed points. They are char-
acterized by y=0, and the solutions of

− �k1 + k2x2�x + f0 + alabpsub
�a

a01 + x
= 0. �6�

In previous works,4,5 a fixed point losing its stability in a
Hopf bifurcation20 was identified as the basic mechanism
leading towards the periodic modulation of airflow, and
therefore of sound production. Yet, the model presented here
displays a richer set of solutions.

We analyze the bifurcation diagram of our system in
terms of the parameters which were found to be relevant for
song production.4,6 In Fig. 3 we display a region of the pa-
rameter space �psub ,k1� for which three fixed points exist
�shaded region�. The other parameters were chosen within
biologically sensible ones in such a way that �−f0+k1a01��0
and �psub�a+ f0a01��0, which guarantees a change in the
number of solutions of Eq. �6� as k1 and psub are slightly
changed �see the caption of Fig. 3�. Outside this region, a
unique fixed point exists. The edges of the cusp shaped re-
gion in the parameter space correspond to saddle-node bifur-
cations �dotted lines in Fig. 3�, where a pair of fixed points
collide in a unique one with zero linear eigenvalues.

As was mentioned above, the possibility of some of
these fixed points undergoing oscillatory instabilities �Hopf
bifurcations� was identified as a way to originate periodic
motion of the labia, and therefore modulations of the airflow.
Hence, it is sensible to perform a linear stability analysis in
order to identify the region of the parameter space where
these instabilities occur. Computing the eigenvalues of the
Jacobian of the system described by Eqs. �4� and �5� we
searched for the subset of parameters where the fixed points
of our model would present complex eigenvalues with zero
real parts, conditions that are necessary for Hopf bifurca-
tions. The continuous curves in the region of �psub ,k1� under
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FIG. 3. �Color online� Bifurcation diagram of the model in the �psub ,k1�
parameter space. The shaded region is indicating where three fixed points
coexist. The integration of the model for each region is shown in the corre-
sponding insets. In this set of parameters, a Takens–Bogdanov bifurcation
occurs, where a saddle-node bifurcation �dotted line� is touched tangentially
by a Hopf bifurcation �solid line� and a homoclinic bifurcation �dashed line�.
Path A passes through a SNILC bifurcation and path B through a Hopf
bifurcation. The parameters from Eq. �5� are alab=2.0�10−4 cm2,
m=0.4 ng, �1=4.44�10−5 dyn s /cm, c=1.6�10−2 dyn s /cm3,
f0=0.0399 dyn, �=5.0�10−6 s, a01=0.1 cm, a02=0.11 cm,
k2=400 dyn /cm3, and �2=4.0�10−11 dyn s3 /cm3. Finally, the bifurcation
diagram corresponds to k1� �0.16,0.52� dyn/cm and psub� �1852,2084�Pa.
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analysis in Fig. 3 indicate where these conditions are met.
The existence of one-dimensional paths in parameter

space where saddle-node �or saddle repulsor� bifurcations
take place, and one-dimensional paths where Hopf bifurca-
tions occur, preclude the possibility of rich dynamics when
they meet. In Fig. 3 we display a region of the parameter
space of our model where different dynamical regimes were
found. The different insets display the solutions that we
found in each of the regions with different dynamical
behavior.

In region 1 of Fig. 3, a unique fixed point is found.
Region 3 �inside the shaded region� presents three fixed
points: in the transition from region 1 to region 3, a saddle-
node bifurcation generates the two additional fixed points.
The attractor generated in this bifurcation undergoes a Hopf
bifurcation as we enter region 4. The separation between
regions 4 and 5 is defined by an homoclinic bifurcation: the
limit cycle of region 4 collides with the saddle fixed point.
Region 7 is dynamically equivalent to region 3, just as region
6 is equivalent to region 4. Interesting enough, region 5
�separated from regions 4 and 6 by homoclinic bifurcation
lines� presents a dynamically rich structure: the unstable
manifold of the saddle is part of the stable manifold of the
attractor. In this way, when we change the parameters in
order to move from region 5 to region 2, a saddle node in a
limit cycle bifurcation21 �SNILC� takes place.

It is interesting to discuss the degree of generality of the
set of solutions found in the analysis here reported. Notice
that whenever there are both a one-dimensional set of param-
eters where a saddle-node bifurcation and a Hopf bifurcation
take place, it is generic that they meet. Whenever that occurs,
any model can be reduced to a normal form whose dynamics
has been thoroughly studied.20 The behavior of any system in
the vicinity of the parameter space where a saddle-node and
a Hopf bifurcation collide has been studied by Takens and
Bogdanov,20 and therefore the solutions found in the numeri-
cal simulations of our model are not a specific feature of our
model.

Some of the solutions displayed in Fig. 3 have profound
effects in terms of our problem. Whenever we abandon re-
gion 5 towards region 2, the saddle fixed point and the at-
tractor collide in a saddle-node bifurcation. But as the un-
stable manifold of the saddle is part of the stable manifold of
the attractor, an oscillation is born as the fixed points collide.
This oscillation will have important differences with one
born in a Hopf bifurcation. In the last case, the oscillation is
born with zero amplitude and a finite frequency. On the con-
trary, an oscillation born in a SNILC bifurcation will present
a finite amplitude, and zero frequency. As the parameter is
further moved, the frequency will start to increase, but for a
region of the parameter space of nonzero measure, the oscil-
lation will present a critical slowing down whenever the vari-
ables approach the region of the phase space where the
saddle and the attractor collided. The reason is that after the
bifurcation there is a saddle-node remnant. The period of the
oscillations being born T, in fact, scales as �ac−a�−1/2, where
a is the control parameter �the pressure psub, in our case�, and
ac the parameter value at which the bifurcation occurs.21 Due
to this saddle-node remnant, the labium stays longer time in

one point than Hopf bifurcation case, and moves abruptly.
For this reason, the spectral content of the oscillation will be
very rich in the vicinity of the parameters where the SNILC
bifurcation took place.

We can cross the bifurcation line corresponding to the
SNILC by only changing the parameter psub �sublabial pres-
sure�, and the frequency of the oscillations will strongly de-
pend on the distance of the pressure psub to the bifurcation
point. Therefore, the model suggests that it is possible to
control the fundamental frequency of the vocalizations with
the modulations of the air sac pressure. In Zebra finches, it
was reported that low frequency sounds can be produced
with no activity of the ventral muscles.22 A plausible inter-
pretation in the framework of this model is that those vocal-
izations are originated in SNILC bifurcations and the funda-
mental frequency is only controlled by the air sac pressure.13

On the other hand, for other oscine birds, as the Northern
cardinals and Brown thrashers �Toxostoma rufum�, the activ-
ity of ventral syringeal muscles strongly correlates with the
fundamental frequency of the vocalizations.2,6 It was sug-
gested, and mathematical models were consistent with the
interpretation, that these muscles change the restitution
forces of the oscillating labia, and therefore the larger the
activity of those muscles, the larger the frequency of the
vocalizations. It is important to notice that the sounds pro-
duced by these birds are nearly tonal, so the model used to
reproduce the data explored the Hopf bifurcation and not the
SNILC. This two behaviors are contemplated in our model,
as it is shown in Fig. 3, paths A and B.

As we mentioned before, the reason for choosing the
parameters psub and k1 in our inspection of the dynamical
responses of the system is biased by previous works, where
experimentally and theoretically it was shown that psub was
important to overcome dissipation and turning on the oscil-
lations via the energy transfer to the labia, and k1 correlated
with the fundamental frequency of the vocalizations.6 There
are two other parameters that have an important effect in the
solutions of our model. The term f0 corresponds to a force
independent of the labial dynamics, and it has been inter-
preted in terms of the action of active gating by oscine birds
�controlled by dorsal syringeal muscles�.2,5 Mathematically,
this term avoids oscillations by moving the fixed point to
regions of the space where dissipation is too high �either
pushing the labia together, or contracting them towards the
containing walls�. In terms of our model, the increase of f0

does in fact turn oscillations off. In Fig. 4 we show how the
bifurcation diagram is translated to the right as f0 is in-
creased. In this way, if the system is in a region of the pa-
rameter space where it is oscillating �region 2 in Fig. 3�, it is
possible to increase f0 until entering to the region 1 where no
oscillations occur.

In our model, the parameter �a, describes the shape of
the prephonatory position. The rich structure of fixed points
which was ultimately responsible for the appearance of
SNILC bifurcations occurs if Eq. �6� presents more than one
zero. As in our model psub�0, if �a�0 then Eq. �6� will
have three roots. Besides this, it must be taken into account
that the existence of the cusp is a necessary condition but not
sufficient to have a SNILC bifurcation. In order to have this
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bifurcation, it is needed that the Hopf line touches the
saddle-node line in such a way that the regions 2 and 5 are
adjacent and the borderline separating these regions is a
saddle-node bifurcation �as is shown in Fig. 3�. For �a�0,
only one fixed point exists, and the only qualitative change
that is possible to find as the parameters are changed is a
Hopf bifurcation giving rise to nearly tonal oscillations. In
this way, the same model is capable of presenting the rich
dynamics associated with spectrally rich sounds and tonal
sounds.

IV. PATHS IN PARAMETER SPACE

In previous works, computational models were used to
synthesize birdsong.4,5 Slow parameter changes in pressure
were used to place the model in a region of the parameter
space where oscillations would occur, and eventually to re-
turn the system to a region of nonoscillating solutions. The
acoustic features of the sounds would depend on the values
of the other parameters, which could also change slowly or
remain fixed. Actually, some of these models were driven by
experimentally recorded parameters �as the air sac pressure
and activity of ventral syringeal muscles� and used to gener-
ate synthetic sound.6 In this section we explore the parameter
space through different paths, in order to describe acousti-
cally the sounds generated. Since new dynamical regimes
exist, new acoustic features are expected.

In Fig. 5 we illustrate our results. In panel �a�, we show
the sonogram11 of the synthetic song generated when the
parameters are moved along the closed path A displayed in
Fig. 3. This path consists of a cyclic movement of the pa-
rameter psub �Fig. 5�c�� for a fixed value of k1. The chosen
value of k1 guarantees that the oscillation starts in a SNILC
bifurcation. As the system enters the region of the parameter
space where the oscillations take place, sound is generated.
As in Refs. 4, 5, and 8, the oscillations of the labia are used
to generate an oscillating airflow which is finally used to
synthesize sound. Notice the rich spectral content of the
sound, indicated by many dark lines in the sonogram. In the
inset of Fig. 5�a� we illustrate the generated time series data.

Its shape is very different from a simple harmonic oscilla-
tion, which is also clear from its spectrum. It is illustrative to
compare these results with the sound generated using the
path labeled B in Fig. 3, where the only changed parameter is
k1 and the variation of psub is the same of path A. In this case
�Fig. 5�b��, the system undergoes a Hopf bifurcation, where a
harmonically poor oscillation is born. The sonogram dis-
plays, for the same resolution, a smaller number of curves,
the shape of the oscillations resembles simple harmonic ones
�of growing amplitude as expected in a Hopf bifurcation as
the parameters are increased�, and finally the spectrum of a
segment shows supra-harmonic peaks of small amplitude.

The synthetic sounds generated in Fig. 5 illustrate how
the two different dynamical mechanisms for generating os-
cillations discussed in this work can account for the spectral
features of the representative syllables described in Fig. 1. As
in the syllable displayed in Fig. 1�b�, the synthetic sounds
originated in a Hopf bifurcation have almost all their energy
in the fundamental frequency. The synthetic sounds origi-
nated at a SNILC �Fig. 5�b��, will have a rich spectral con-
tent. In the experimental data �Fig. 1�c��, beyond a rich spec-
trum we can observe the influence of the vocal tract which
emphasizes the harmonics between 3 and 6 kHz �an effect
not considered in our model�.

Notice that in the sonogram of Fig. 5�b�, there is still a
small dependence of the fundamental frequency with the
pressure. This is a consequence of the nonlinear term in the
restitution force. As the pressure is increased, the fixed point
moves away from its rest position. In this way, with a fixed
value of k1 we obtain modulations in the fundamental fre-
quency of the sound trough modulations in the pressure. This
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FIG. 5. Synthetic sounds generated with the model. The sound in �a� is
obtained using path A in the parameters space shown in Fig. 3. This corre-
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The amplitude of the sound wave has the characteristic shape of a Hopf
bifurcation. The comparison of both FFT shows that the signals born in a
SNILC bifurcation have a richer harmonic content than those born in a Hopf
bifurcation, which correspond to quasi-tonal sounds.
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effect was already discussed in the framework of the sound
production of a suboscine bird �the Great Kiskadee�, which
does not require an active control of ventral muscles to pro-
duce variations of the fundamental frequency of its
vocalizations.19 In some oscine species, where wide excur-
sions in fundamental frequency is an appealing characteristic
of their vocalizations,1 it is likely that they require more than
this small dependence of frequency with air sac pressure, and
an active control through ventral syringeal muscles is to be
expected.

The last characteristic of the song that we synthesize is
the capability of uttering multiple syllables with the same
pressure pulse. In Zebra finch it is observed that there are
some syllables �continuous lines in a sonogram� that are pro-
duce within an expiratory pulse.13 Since it was reported the
role of the dorsal syringeal muscles is adduction,2 the sim-
plest interpretation is that the bird is using the dorsal muscles
to actively close the tract and prevent oscillations of the la-
bia. In terms of the model, this effect is described by the term
f0. In Fig. 6 we show how this can be synthesized: during a
unique pressure pulse, the increase of the value f0 turns the
oscillations off.

V. CONCLUSIONS

In this work, we have studied the solutions of a simple
model of birdsong production. The introduction of a nonlin-
ear component of the restitution force allowed us to find a
rich variety of dynamical regimes. Beyond the oscillations
born in a Hopf bifurcation, which was already reported as a
plausible mechanism for the onset of tonal sounds, we found
a variety of different dynamical regimes. Their existence, in
the model, depend on the prephonatory shape of the labial
configuration. This prephonatory shape is not only the initial
condition but defines an average convergent or divergent
profile as the dynamics of x defines only a small departure
from the rest position.

One of the most interesting scenarios found in the model
was the existence of SNILC bifurcations, where a saddle
fixed point whose unstable manifold is part of the stable
manifold of an attractor, collides with it. Oscillations of zero

frequency are born at the bifurcation. As the bifurcation pa-
rameter is slightly moved away into the region of parameter
space where oscillations occur, the frequency increases.
These oscillations are spectrally very rich, generating sounds
with non tonal features. In this way, different spectral fea-
tures of sound originate in the dynamics of the avian vocal
organ.

The nonlinear nature of the avian vocal organ was al-
ready reported to have important consequences in the sound
it produces, from subharmonic solutions,23 to nontrivial
transduction of pressure into frequency,19 among other ef-
fects. In this work we describe the dynamics behind the re-
lationship between fundamental frequency and spectral
content13 in some sounds �those originated at SNILC bifur-
cations�.

In the study of birdsong, a large effort is made in order
to understand the neural basis of the motor commands re-
sponsible for the different acoustic features of the song. Yet,
behavior emerges from the interaction of a nervous system, a
peripheral system, and environment. This study illustrates
that many features might not require separate instructions,
but are linked by the nature of the dynamical solutions of the
peripheral system.
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