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Abstract. The way in which information about behavior is represented at different levels of the motor path-
way, remains among the fundamental unresolved problems of motor coding and sensorimotor integration.
Insight into this matter is essential for understanding complex learned behaviors such as speech or bird-
song. A major challenge in motor coding has been to identify an appropriate framework for characterizing
behavior. In this work we discuss a novel approach linking biomechanics and neurophysiology to explore
motor control of songbirds. We present a model of song production based on gestures that can be related
to physiological parameters that the birds can control. This physical model for the vocal structures allows
a reduction in the dimensionality of the behavior, being a powerful approach for studying sensorimotor
integration. Our results also show how dynamical systems models can provide insight into neurophysio-
logical analysis of vocal motor control. In particular, our work challenges the actual understanding of how
the motor pathway of the songbird systems works and proposes a novel perspective to study neural coding
for song production.

1 Introduction

Birdsong is a complex behavior, which emerges out of the
interaction between a nervous system, a peripheral biome-
chanical device, and the environment. At least for approx-
imately forty percent of the known species, some degree of
learning is involved in the process of acquiring the species-
specific vocalizations. This task is quite rare in the animal
kingdom and so birdsong has emerged as an important
animal model for studying how a nervous system recon-
figures itself during the acquisition of a complex behavior
through learning [1–3].

Between the nervous system and the actual song
stands a peripheral system, including the respiratory sys-
tem, the vocal tract and the sound source. The last one
is a complex biomechanical device called the syrinx. This
is a bipartite structure between the bronchi and the tra-
chea that holds two pairs of internal labia, which mod-
ulate the airflow generating sound waves. The configura-
tion of this device can be controlled by the activation of
specific muscles, and those changes are ultimately trans-
duced in acoustic modulations of the uttered sounds. Since
the generation of sound requires also establishing airflow
between the internal labia, a bird has to exquisitely co-
ordinate respiratory and syringeal muscles to provide the
uttered sounds with specific acoustic features [4].

Those physiological instructions in charge of control-
ling the syrinx are the output of a nervous system, which
dedicates well-defined neural nuclei to their production.

a e-mail: anita@df.uba.ar

Each nucleus is set of a few thousands of interconnected
neurons, and the sets are also connected among them-
selves, constituting a structure known as the song system.
A variety of techniques have been applied to unveil how
the different parts of the song system end up generating
the necessary motor patterns in control of the syrinx. De-
spite important efforts in the last decades, the problem
has shown to be quite elusive.

The problem seems discouragingly complex and yet,
in this work we describe three instances where low di-
mensional nonlinear dynamics allows unveiling important
aspects of birdsong production. First, we show that many
acoustic features present in birdsong arise when relatively
simple physiological instructions drive a simple model that
captures the essential dynamics of the syrinx. We tested
this model by exposing both anaesthetized and sleeping
birds to replicas of their own songs, and compared the
responses of neurons selective to the bird’s own song to
the synthetic stimuli generated with a low dimensional
nonlinear model. The similarity in the neural responses
allowed us to build confidence on the pertinence of a low
dimensional description of the biomechanics involved in
birdsong production. Afterwards, we move one step closer
to the nervous system, and show that those relatively sim-
ple physiological gestures needed to drive the syrinx can
also be generated as the solutions of a low dimensional dy-
namical system representing a simple neural architecture.

The work is organized as follows. In Section 2 we
describe the biomechanics of birdsong production, and
the mechanisms by which relatively simple physiologi-
cal instructions (air sac pressure and labial tension) are
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Fig. 1. Typical zebra finch song and vocal production model.
(a) The top panel shows the spectrogram of the sound wave
(middle panel) corresponding to a zebra finch utterance. The
pressure pattern used to generate this song is shown in the
lower panel, where each expiratory pulse (pressure above green
line) defines a syllable indicated with letters in the top panel.
The grey area indicates inspiratory pulses. (b) The syrinx is
positioned at the base of the trachea, followed by the glottis,
the oro-esophageal cavity (OEC) and the beak. All these struc-
tures form the vocal tract that acts as a filter of the sound wave
generated at the syrinx. The syringeal labia are modeled as a
nonlinear oscillator.

transduced into complex sounds. Section 3 describes air
sac pressure dynamics in the case of canaries. We show
that pressure patterns can be obtained as a the result of
the nonlinear competition between two time scales, and
describe experiments that we performed to manipulate
one of these time scales in order to test our prediction.
In Section 4 we show that the same neural architecture
used to generate the previously described physiological in-
structions is capable of generating the labial tension in a
different species. In Section 5 we discuss these results.

2 Generating acoustically complex signals
with reasonably simple instructions

Song spectrograms have been the most extended tool for
describing singing behavior and relating neural recordings
to singing (see top panel of Fig. 1a).

These are obtained by performing a time-frequency
analysis of the sound signal. This linear technique allows
inferring, graphically, several acoustic features of the song,
as the fundamental frequency, the harmonic content of the
time trace, or the relative emphasis of frequencies (color
coded in the sonogram). It is natural to ask whether the
bird has to code (and eventually learn) all those features
independently, or if the nonlinear nature of the avian vo-
cal organ constrains those features. Ultimately, it is the
dynamics of the structures – principally the dynamics of
the intrinsic syringeal musculature controlling the tension
of the syringeal labia and of the thoracic and abdominal
musculature controlling air sac pressure – that produces
the airflow fluctuations which after being filtered by the
upper vocal structures generates the sound.

In an extensive development over many years, we have
tested the hypothesis that much of the acoustical complex-
ity present in oscine song was the result of relatively simple
trajectories in a low dimensional physiological parameter
space of pressure and tension driving a highly nonlinear
biomechanical device (e.g., [5–10]). This hypothesis has
been tested in several species with very different types
of songs, both spectral and temporal wise: rufous-collared
sparrow (Zonotrichia capensis), canary (Serinus canaria),
northern cardinal (Cardinalis cardinalis) brown thrash-
ers (Toxostoma rufum) and zebra finch (Taeniopygia gut-
tata). Moreover, the nonlinear nature of the sound source
allows fundamental frequency modulation through pres-
sure modulation. This fact was a prediction of the model
and was tested experimentally in a suboscine species, the
great kiskadee (Pitangus sulphuratus) [11]. Before this re-
markable result, it was assumed that frequency and pres-
sure were two physiological parameters controlled inde-
pendently by the central nervous system. The nonlinear
model allowed a more integrative perspective.

Similarly to human speech, birdsong is typically gener-
ated during expiration (see Fig. 1a). During song produc-
tion a stereotyped pattern of expiratory air sac pressure
pulses, alternate with brief, deep inspirations, called mini-
breaths (shaded region in the lower panel of Fig. 1a). In
this way, the respiratory activity determines the coarse
temporal structure of the song (syllable sequence). There-
fore, a model for birdsong production requires inspecting
the dynamics of syringeal labia during those expiratory
pulses.

In order to generate a dynamical model for the vocal
source, we propose that the labia support two modes of
vibration: an upward propagating wave and a lateral dis-
placement around their midpoint positions, as suggested
by videography of the folds during phonation [12]. These
modes are coordinated in such a way that energy is gained
from the airflow in each cycle, making auto-sustained os-
cillations possible. In order to do so, the labia present
a convergent profile when moving away from each other,
and a more planar profile during approaching. When the
labia present a convergent profile, the average pressure
between the labia is close to the air sac pressure. When
the labia are approaching, the average pressure between
them is similar to the atmospheric pressure. In this way,
the pressure is high when the labia are moving away from
each other, and low when the labia are approaching each
other. This allows to overcome dissipative forces and to
transfer energy from the airflow to the labia [4,5,13].

The dynamical description of this mechanism requires
writing Newton’s equations for a labium [4,5]. If x stands
for the midpoint position of a labium of unitary mass, they
read:

ẋ = y

ẏ = −k(x)x − βy − γx2y + aavpav (1)

where the first term of the second equation represents the
(nonlinear) elastic restitution (k(x) = k1 + k2x

2) [14], the
second one the linear dissipation, the third one a nonlin-
ear dissipation accounting for the existence of boundaries
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Fig. 2. Bifurcation diagram of birdsong production model.
Qualitative differences in the dynamics are displayed in the
numbered regions. The physical model (a) and its normal form
(b) exhibit analogous bifurcation diagrams. The integration
of the model for each region is shown in the numbered insets
in (c). In this set of parameters, a Takens-Bogdanov bifurcation
occurs, where a saddle-node bifurcation (brown line) is touched
tangentially by a Hopf bifurcation (blue line) and a homoclinic
bifurcation (dashed green line). A SNILC bifurcation occurs
between region 2 to 5, and a Hopf bifurcation between regions 1
and 2.

for the oscillations, and pav is the spatial average of the
inter labial pressure. This last term is responsible for the
energy transfer from the airflow to the labium and it can
be written in terms of the sub syringeal pressure psub,
the midpoint position of the labium x, its velocity y, the
resting positions of the edges of the labium (x01 and x02),
and a parameter describing the time τ that takes the wave
propagating upward in the labia to cover half its length:

pav = psub(x01 − x02 + 2τ y)/(x01 + x + τ y). (2)

These equations allow describing the dynamics of the
sound source that can be explored in a two-parameter
space. In Figure 2a we show the bifurcation diagram of
the system moving parameters (psub, k1). If the parame-
ters’ values are in region 1, only one attracting fixed point
exists. This corresponds to non-oscillating labia, i.e., silent
regime. In region 2 we find that the fixed point is unstable
against a limit cycle. Oscillations of the labia correspond
to sound production. Regions 3, 4, and 5, bounded by the
saddle node curves (full brown line in Fig. 2) that converge
to the cusp bifurcation point, have three fixed points. Be-
tween regions 2 and 5, a saddle node in a limit cycle
(SNILC) bifurcation takes place, and between regions 1
and 2 a Hopf bifurcation (full red line in Fig. 2) [15]. The
dashed green line indicates a homoclinic bifurcation.

This simple model captures the physiological mecha-
nism of sound initiation: when the bird intends to vocalize,
it increases air sac pressure to pass through a threshold in
order to generate auto-sustained oscillations that would
modulate the airflow generating sound (see recorded air
sac pressure signal and sound wave in Fig. 1a). In the
model, this could happen in two distinctive dynamical
ways: through a Hopf or a SNILC bifurcation. The former
generates tonal sounds: sinusoidal oscillations, born with

a defined frequency and zero amplitude. The latter gener-
ates oscillations born with infinite period and spectrally
rich: the saddle node remnant generates a spike-like wave,
providing a substantial amount of energy to the harmon-
ics. This rich variety of sounds covers a lot of the birdsong
diversity.

The other physiological feature that is described by
the model is that for increasing values of the parame-
ter describing the lineal restitution (k1), the oscillations
will present higher fundamental frequencies. This param-
eter is related to the activity of syringeal muscles that
increase the tension of syringeal labia. It has been shown
that increasing muscle activity results in increasing values
of fundamental frequency [16].

Another way of controlling the fundamental frequency
is generating the oscillations through the SNILC bifur-
cation, where frequency values depend on the distance
from the bifurcation point. In the model, this can be con-
trolled not only by the restitution parameter but also by
the pressure parameter, which provides a dynamical ex-
planation for fundamental frequency modulation through
air sac pressure [11,14,17].

In order to minimize the number of parameters in-
volved in the description we performed a reduction of the
model to a normal form: a minimal mathematical descrip-
tion of the dynamics capable of presenting the same bi-
furcation diagram as the original model [15,18]. We de-
rived a standard equation which presents the bifurcation
diagram of the physical model. It is a two dimensional
dynamical system presenting a cusp and a Hopf bifurca-
tion, obtained as a third order expansion around a Takens-
Bogdanov linear singularity [18], which reads:

ẋ = y

ẏ = −α(t)γ2 − β(t)γ2x − γ2x3 − γx2y

+ γ2x2 − γxy. (3)

Comparing the bifurcation diagram of the physical model
defined by equation (1) (see Fig. 2a) with that of the nor-
mal form defined by equation (3) (see Fig. 2b), a proper
mapping of air sac pressure and tension into the unfold-
ing parameters allows to recover the qualitative dynamics.
In reference [19] the relationship was explicitly computed;
the basic operations involved were (i) a translation of the
values of (psub, k1) where a Takens Bogdanov bifurcation
takes place in the physical model to (α, β) = (0, 0), (ii) a
multiplicative scaling, and (iii) a rotation of π. The nor-
mal form equations describe dynamical behavior in the
regime of interactions between Hopf and a saddle node in
limit cycle (SNILC) bifurcations. For zebra finches, most
phonatory oscillations start in SNILC bifurcations, as the
air sac pressure is increased (going from region 5 to re-
gion 2 in the parameter space shown in Fig. 2). Such dy-
namical constraints help to define the universe of zebra
finch sounds. For example, there is a tight relationship
between spectral content of a sound and its fundamental
frequency: the lower the frequency, the higher the spec-
tral content [20]. Small changes in parameters can produce
radically different changes in sound output, depending on
where those movements occur in the bifurcation space.
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So far, we have described the sound source, which
sits at the base of the vocal tract (see Fig. 1b). In or-
der to reproduce realistic sounds, we modeled the trachea
as a tube and then its output was used to excite the oro-
esophageal cavity (OEC) which is modeled as a Helmholtz
resonator [10,21], and its output will be our synthetic song.

In this way it is possible to synthesize songs with a low
dimensional mathematical model whose parameters are
easy to interpret in terms of physiological and anatomical
observations. The time-dependent parameters can change
smoothly in order to reproduce the acoustic properties of
the recorded song that the model for song production at-
tempts to describe. These time traces represent “motor
coordinates”, and they potentially provide a more nat-
ural bridge between the activity of the central nervous
system and behavior than do sound spectrograms [8]. We
tested this hypothesis by generating a synthetic copy of
the recorded birdsong (e.g., Fig. 3). To go beyond the
striking similarity between synthetic and natural songs, we
used a highly accurate neurophysiological measurement in
order to assess the biological relevance of the low dimen-
sional model. We recorded neural responses to these au-
ditory stimuli in song motor nuclei, demonstrating strong
positive results [8].

3 The nature of the instructions: the case
of pressure for canary song

As we have discussed above, a central aspect of the mo-
tor control of birdsong production is the capacity to gen-
erate diverse respiratory rhythms, which determine the
coarse temporal pattern of song. The neural mechanisms
that underlie this diversity of respiratory gestures and the
resulting acoustic syllables are largely unknown.

The neural network responsible for the generation of
the gestures involved in birdsong has been well described.
It includes two forebrain nuclei: HVC (used as a proper
name) and the robust nucleus of the arcopallium (RA)
that generates the coordinated motor patterns that help
to shape the instructions driving the muscles controlling
respiration, the vocal organ and upper vocal tract struc-
tures. However, it has been debated to what degree this
telencephalic motor program contains direct instructions
for detailed patterns such as the various timescales of the
behavioral output [22]. One model, based in studies per-
formed in zebra finches, proposes a direct control by the
telencephalic song control area, such that all timescales
present in the song arise directly from the output signal
of this neural nucleus. Support for this model was derived
from observations of sparsely coding output neurons in
HVC as well as experiments in which song was stretched
by cooling of HVC [23,24]. On the other hand, in the case
of canaries, an interactive model has been proposed, where
motor instructions emerge from nonlinear interaction be-
tween timescales of different components of the motor con-
trol network [7,25]. Two pieces of evidence point towards
this integrative picture. One of them is the morphology of
the pressure patterns used to generate the different sylla-
bles used in canary song. Figure 4a illustrates a typical

Fig. 3. The output of a low dimensional model for song pro-
duction is able to reproduce a complex natural behavior. An
algorithmic procedure allows to obtain synthetic copy of a ze-
bra finch song by fitting two acoustic features of the recorded
song. The top panel shows the sound wave and spectrogram
of the recorded song and the lower panel corresponds to the
synthetic song.

pressure pattern during canary song production [9,26].
The different parts of this temporal pattern can be ob-
tained as a minimally complex neural architecture that
is driven by simple instructions. Namely, integrating the
following dynamical system:

ẋ = λ (−x + S(ρx + ax − by)),
ẏ = λ (−y + S(ρy + cx − dy)),

with S(x) = (1 + e−x/x0)−1, (4)

where x stands for the activity of a population of excita-
tory units, y for the activity of a population of inhibitory
neurons, and ρx(t), ρy(t) for the inputs to those popu-
lations. The constants a, b, c and d describe the archi-
tecture of the array. The top panel of Figure 4b shows a
caricature of this model, with interconnected nucleus of
excitatory and inhibitory populations. A good intuition
on the dynamics of this system can be gained by inspect-
ing the different behavior displayed by this system under
stationary values of the input parameters and ρx, ρy [27].
Figure 4b shows the bifurcation diagram of the system.
Note the similarity between Figures 4b and 2.

In order to generate different patterns, the nature of
the driving signal has to experience some changes, typi-
cally the amplitude and frequency of the forcing. In this
way, different shapes in the time series can be generated as
a unique neural architecture driven by slightly different in-
structions. An example of this is shown in Figure 4c where
all the pressure patterns corresponding to a canary song
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Fig. 4. Respiratory patterns during canary song. (a) Recorded
air sac pressure during singing. The colored lines indicate dif-
ferent syllable types. (b) Diagram of neural nuclei of excitatory
and inhibitory populations and the bifurcation diagram of the
system. Note the similarity between this figure and Figures 2a
and 2b (the numbers indicate the same dynamical regime of
Fig. 2). (c) Synthetic pressure patterns obtained integrating
the dynamical systems described by equation (4) with differ-
ent values of (ρx, ρy), shown as colored dots and lines in the
bifurcation diagram of (b).

are generated using the model described by equation (4),
using different combinations of (ρx, ρy). The colored dots
and lines in the bifurcation diagram of Figure 4b corre-
spond to a particular pressure pattern in Figure 4c.

Since any neural architecture is intrinsically nonlinear,
even slight changes in the driving instructions can lead
to qualitatively different patterns. In this way, different
patterns have been interpreted as sub-harmonic solutions
of simple instructions [7,9].

The other evidence suggesting the integration of differ-
ent time scales in the generation of the pressure patterns
used in canary song comes from the results obtained as
one of the time scales is manipulated [25]. It has been well
established that the thermal manipulation of HVC affects
the timing of the song [24]. This experiment showed that
at least one of the pertinent time scales could be perturbed
by thermally tempering with that telencephalic nucleus.

A simple integrative model, which can also reproduce
the shapes of the pressure temporal patterns, predicts that
a small change in the frequency of an average instruction
coming from HVC may provoke a drastic change in the
temporal pattern of resulting syllables. This facilitates a
control mechanism where simple neural instructions inter-
acting with downstream neural architecture can result in
complex rhythms in the output patterns. Manipulation of
the telencephalic timescale through local cooling results in
the predicted effects of initial stretching and then “break-
ing” of syllables when the cooling range is extended. These
novel “syllable-breaking” patterns can be interpreted in
terms of bifurcations of the model [25].

In the paradigm of nonlinear interaction, HVC, or a
circuit including HVC, does play an important role in
the generation of the respiratory patterns. This paradigm
challenges the idea of a “look up table” linking bursts
of HVC activity with brief segments of song, with HVC

bursts determining a unique timescale in the birdsong
system[22]. We do not propose a specific location in the
neural architecture of the songbird system for the second
timescale necessary to explain the shape and rate of the
measured pressure patterns and their breaking. Instead,
we show that a minimal computational model (two neu-
ral populations: interconnected excitatory and inhibitory
neural nuclei) is capable of transducing very simple in-
structions into the specific patterns measured in canaries.

4 The nature of the instructions: the case
of tension in finches

The initial computational models of birdsong production
suggested that very simple gestures for pressure and labial
tension could account for many of the features found in
song. For example, the nature of the frequency modula-
tion was thought to be controlled by the phase difference
between those gestures, which could be as simple as har-
monic fluctuations [5]. The actual measurement of the air
sac pressure in canaries unveiled a subtler scenario: dif-
ferent syllables required different pressure patterns. Yet,
the diversity of gestures was not a capricious collection
of shapes: they can be obtained as the different solutions
presented when a minimal neural architecture is driven by
simple driving patterns [9,25]. Is this also the case for the
patterns corresponding to the tension?

This issue is slightly more difficult to test. The smooth
time series that is measured by a pressure transducer con-
nected through a cannula to an air sac has no parallel
when it comes to estimating labial tension. The songbird
syrinx is a complex anatomical structure composed by
cartilaginous rings and half-rings, muscles and labia. Six
pairs of syringeal muscles provide mechanical control in
the syrinx, four of which have both insertion sites on the
syrinx (intrinsic muscles), being attached to the cartilagi-
nous structures. The phonating labia are attached to the
internal part of modified cartilaginous half-rings. In this
way, specific syringeal muscles would contract to move the
cartilage that would ultimately modify the properties of
the labia. Moreover, very little is known about the histol-
ogy or elastic properties of the labia in songbirds [28]. The
closer one gets to measure a proxy for the labial tension
is to measure the electrical activity of the syringeal mus-
cles innervating the syrinx. Unfortunately, the relation-
ship between the EMG of the different syringeal muscles
and the actual physiological parameters in the model is
still not completely unveiled. In other words, there is no
unique relationship between EMG activity of individual
syringeal muscles and the parameters controlled by them.
Moreover, it is not yet solved how the different muscles
synergistically control the acoustic properties.

Despite these difficulties, it was recently shown that a
reconstruction of the gestures necessary to drive a simple
biomechanical model to generate realistic song was plausi-
ble. In order to validate the reconstruction procedure two
strategies were followed. First, the reconstructed air sac
pressure was compared with the experimentally recorded
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Fig. 5. Simple motor gestures generate complex behavior.
Recorded zebra finch song (a) is well reproduced by the output
of a low dimensional model (b) when the parameters are in the
vicinity of bifurcations. Panel (c) shows the temporal evolution
of one of the two parameters of equation (3), namely, β(t) that
can be related to the tension of the syringeal labia.

one, obtaining a high correlation between the time
traces [10]. More spectacularly, synthetic song produced
with the model, when driven by the reconstructed phys-
iological gestures, was played to sleeping birds while the
activity of neurons selective to the bird’s own song was
recorded [8]. Despite the extraordinary selectivity of these
neurons to the bird’s own song [29,30], the synthetic
song was capable of eliciting responses. Thereby, we per-
formed electrophysiological experiments in order to obtain
a highly accurate biological measurement to validate the
birdsong production model.

Assuming the biomechanical model described in Sec-
tion 2 (a model capable of starting oscillatory behav-
ior through a SNILC bifurcation), we created synthetic
versions of the songs that our test birds sang. Time-
dependent parameters of the model describing the labial
dynamics were reconstructed to account for the time-
dependent acoustic properties of the sound. We used an
algorithmic procedure to reconstruct unique functions for
the air-sac pressure (α(t)) and the tension of syringeal
labia (β(t)) [10]. The result of the procedure for one song
is illustrated in Figure 5, showing that many features ob-
served in the spectrogram of the recorded song (Fig. 5a)
were also present in the synthesized song (Fig. 5b). Re-
markably, relatively simple time traces of reconstructed
pressure and tension arose from fitting the bird’s song
(see Fig. 5c for an example of reconstructed tension). In
fact, song was described by the sequence of these pressure-
tension trajectories, which we call gestures, with gesture
onsets and offsets defined as discontinuities in either the
pressure or tension functions.

For the songs reported in reference [8], we found that
most of the parameters could be approximated well by
fractions of sine functions, exponential decays, constants
or a combinations of these. Most remarkably, those pat-
terns can also be found when a unique neural architecture
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Fig. 6. Tension of the syringeal labia of zebra finches generated
by a simple neural architecture. (a) Bifurcation diagram of the
dynamical system described by equation (4). Simple parame-
ter explorations near bifurcation regions generate a diversity
of tension gestures that could be used to generate synthetic
song (b). The colored lines and numbers show the correspon-
dence between the exploration in parameter space and the tem-
poral evolution of the system’s output.

is driven by essentially the same simple instruction: a kick
followed by a slow decay. In Figure 6a we display the bi-
furcation diagram of a low dimensional dynamical system
ruling the average dynamics of a population of excitatory
units coupled to a population of inhibitory ones (the same
system described with Eq. (4)). The lines represent bi-
furcation curves: curves in parameter space that separate
parameter regions where the system presents qualitatively
different behaviors. The three curves ending in arrows rep-
resent trajectories in the parameter space of the driving of
excitatory and inhibitory populations (ρx, ρy). The lower
panel of Figure 6b shows the solutions generated by the
neural network under the driving showed by the curves A,
B and C in Figure 6a. No quantitative calculation is re-
ally needed in order to recognize that the solutions cor-
respond to the reconstructed patterns (as the one shown
in Fig. 5c). The same neural architecture (an excitatory
and an inhibitory population of neurons), and similar tem-
poral patterns driving it (kicks with exponential decays)
were necessary in order to generate the different tension
patterns.

5 A common theme: variability around linear
degeneracies

There is a hierarchy of complexity in this phenomenon.
The sounds are complex indeed, with rich and subtle re-
lationships between different acoustic properties like fun-
damental frequency and spectral content. Indeed, most of
the acoustic features of birdsong come in package. The
origin of this is the nonlinear nature of the vocal organ,
which bounds the spectral relationships between the ut-
tered sounds. Moreover, these do not depend on the de-
tails of the biomechanics, but on the basic family (“nor-
mal form”) of dynamical system the model of the sound
source belongs to. Because of this, it is quite straight-
forward to generate a diversity of songs using the same
biomechanical model, even modeling songs belonging to
birds of very distant groups (e.g. oscines and suboscines).
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Moreover, many acoustic features are found both in birds
and humans, which share the basic biomechanical princi-
ples of the sound sources, but details of musculature and
structure are indeed very different [17,28].

There is structure at the level of the instructions driv-
ing the syrinx itself. In canaries, the different pressure pat-
terns used to utter different syllables can be obtained by
driving a basic neural architecture with very simple time
series. It is remarkable that those simple driving instruc-
tions are transduced into specific patterns: small oscilla-
tions mounted on a DC level, period solutions followed
by a period doubled ones, or larger pulses consisting of
rapid oscillations followed by a slowly decaying pulse (see
Fig. 4c). Even more surprising: those patterns deform as
predicted by the dynamical model when one of the time
scales involved is modified using an experimental setup to
control temperature [25].

To complete the picture, in zebra finches, for which the
other key physiological parameter driving the syrinx has
been reconstructed from theoretical means, the labial ten-
sion can also be generated as the same basic neural archi-
tecture is driven by very simple time series. The exponen-
tial decays, the rapid increases, the oscillations followed
by exponential decays, the constant frequencies followed
by a small decaying tail: all the features reconstructed in
the process of attempting to synthesize realistic sounds,
could be found by driving a simple neural architecture.

These three instances point to a unique strategy: the
transduction of somewhat simple time series into richer
ones. Probably high in the song system (where high is
taken as a synonym of distant to the peripheral vocal de-
vice) the instructions are coded in very simple terms, and
richness is gained as the instructions are integrated into
other systems. After all, the bird first breathes, then vo-
calizes, and finally learns to sing. It is therefore likely that
the final outcome of the songbird’s vocal system is the
integration of those systems.

In the three scales described in this manuscript, the
diversity of gestures can be achieved easily, due to the
fact that the system was operating in the neighborhood
of a linear singularity [31]. From the point of view of the
modeling, this allows us to change rapidly between differ-
ent solutions. Interesting enough, the regions in parameter
space that converge in a linear singularity are open re-
gions of the parameter space. This allows us to have both
the benefits of flexibility and robustness, two of the most
remarkable ingredients of behavior.

6 Conclusions

In this paper we analyzed the generation of birdsong from
a dynamical perspective. Much of the complexity of the
sounds could be tracked to the nonlinear nature of the
avian vocal organ. Specifically, many acoustic features
ended up emerging in “packages” controlled by the un-
derlying dynamics of the biomechanics. A typical example
is the relationship between spectral content and funda-
mental frequency in the song of the zebra finch. Further-
more, nonlinear dynamics seems to play a role beyond

the periphery: in the canary song, the diversity of sylla-
bles requires respiratory patterns that are sub-harmonic
responses of a simple dynamical system driven by simple
instructions. Suggestively, the dynamical system can be
trivially interpreted as the one ruling the dynamics of a
simple neural architecture, overwhelmingly present in the
neural system needed for birdsong production. Remark-
ably, the same dynamical system, driven by simple time
series, also reproduces the tension gestures that have been
reconstructed in the song of zebra finches.

We are not yet capable of identifying where in the
song system (i.e., the specific neural architecture needed
to generate song), but the idea that the physiological in-
structions emerge out of the interaction between different
levels of complexity is already a breakthrough. Birds have
developed song, building on a pre-existing system: the res-
piratory one. Even non-learners have developed the abil-
ity to coordinate their respiratory activity with the proper
morphological modifications of the air pathways, control-
ling constrictions that allowed the modulation of airflow
and therefore, the production of song. Oscine birds, which
constitute approximately 40 percent of the known bird
species, have built on top of this structure a sophisticated
set of neural nuclei that help to learn the physiological
patterns controlling the syrinx and the respiration. The
integrated circuit then is a complicated neural structure
that includes brainstem nuclei that project to the neurons
in charge of controlling respiration and syringeal muscle,
as well as to the telencephalic nuclei which integrate these
signals with auditory and sensory information, to finally
project back to the brainstem. This integrated anatomy
is consistent with our description of progressively com-
plex instructions interacting nonlinearly, and challenge a
widespread view of telencephalic nuclei (HVC) in charge of
a look up table where all the behavior is coded in brief (ap-
proximately 10 ms) commands. The bias towards stressing
the role of telencephalic nuclei in the system is also a result
of the relative simplicity to perform neural recordings in
this region, compared to other parts of the song system. It
is one of the great challenges in the field to overcome this
difficulty, in order to unveil the relative role of different
parts of the song system in the generation and learning of
this complex and rich behavior.

We would like to thank Santiago Boari for comments to this
manuscript. This work describes research partially funded by
CONICET, ANCyT, UBA and NIH through RO1-DC-012859.
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