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Human babies need to learn how to talk. The need of a tutor to achieve acceptable vocalisations is a feature that we share
with a few species in the animal kingdom. Among those are Songbirds, which account for nearly half of the known bird
species. For that reason, Songbirds have become an ideal animal model to study how a brain reconfigures itself during
the process of learning a complex task. In the last few years, neuroscientists have invested important resources in order to
unveil the neural architecture involved in birdsong production and learning. Yet, behaviour emerges from the interaction
between a nervous system, a peripheral biomechanical architecture and environment, and therefore its study should be
just as integrated. In particular, the physical study of the avian vocal organ can help to elucidate which features found
in the song of birds are under direct control of specific neural instructions and which emerge from the biomechanics
involved in its generation. This work describes recent advances in the study of the physics of birdsong production.
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1. No whistles

When a human imitates a bird, he or she whistles. Actually,
the way in which birds vocalise is more similar to the way
in which humans produce voiced sounds (i.e. those that
involve the modulation of an airflow by oscillating vocal
folds, like vowels). In Figure 1 the basic mechanism of bird-
song production is described. As the bird exhales, airflow is
established through the avian vocal organ, called the syrinx.
At the junctures between the bronchi and the tract, there are
two pairs of labia. Under the right conditions, the airflow
induces oscillations in those labia, generating an acoustic
wave. As the wave passes through the trachea and the oro-
esophageal cavity, it modifies its harmonic content, and
eventually emerges as a sound signal. Endoscopic images of
the intact songbird syrinx during spontaneous vocalisations
were necessary to establish this paradigm [1].

Beyond that description it is important to establish what
those ‘right conditions’ are. Moreover, what are the physio-
logical parameters that the bird controls in order to modify
the acoustic features of the vocalisations during birdsong
production? Biologists and physicists have addressed this
issue by complementary approaches.

One can start a modelling effort for birdsong produc-
tion writing equations for the separation between the labia.
Treating a labium as a mass in a spring, we can relate
the stiffness of the latter with the labial tension, which the
bird controls by tightening or relaxing syringeal muscles.
A second important parameter in the problem is the air sac
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pressure, which has to overcome a threshold value in order
to set the labia into an oscillatory mode.

Let us assume that the labia support two modes of vi-
bration: an upward propagating wave and a lateral dis-
placement around their midpoint positions, as suggested by
videography of the folds during phonation [1] (see the inset
displaying the labia in Figure 1). These modes are coordi-
nated in such a way that energy is gained from the airflow
in each cycle, making sustained oscillations possible. In
order to do so, the labia present a convergent profile when
moving away from each other, and a divergent profile during
approach to each other. When the labia present a convergent
profile, the average pressure between them is close to the air
sac pressure. When the labia present a divergent profile, the
average pressure between the labia is similar to atmospheric
pressure. In this way, the pressure is high when the labia
are moving away from each other, and low when the labia
are approaching each other. This allows them to overcome
dissipative forces and to transfer energy from the airflow to
the labia.

The dynamical description of this mechanism requires
writing Newton’s equations for a labium [2,3]. If x stands
for the midpoint position of a labium of unitary mass,
then:

dx

dt
= y,

dy

dt
= −k(x)x − βy − γ x2 y + aav pav,
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Figure 1. Schematic diagram of the avian vocal organ. Two sources generate sound waves that travel across the trachea and the
oro-esopharingeal cavity (OEC). Each sound source is modelled as a small mass attached to a string, and subjected to inter-glottal
air pressure. The labial dynamics determines the modulation of the airflow. The simulated labial position, pressure at the input of the
trachea, and output pressure are illustrated (right).

where the first term of the second equation represents the
(nonlinear) elastic restitution (3), the second one the linear
dissipation, the third one a nonlinear dissipation accounting
for the existence of boundaries for the oscillations, and pav
is the spatial average of the inter labial pressure. This last
term is responsible for the energy transfer from the airflow
to the labium. It can be written in terms of the sub syringeal
pressure psub, the midpoint position of the labium (x), its
velocity (y), the resting positions of the edges of the labium
(x01 and x02), and a parameter that describes the time it takes
the wave propagating upward in the labia to cover half its
length (τ ):

pav = psub(x01 − x02 + 2τ y)/(x01 + x + τ y).

With these equations it is possible to describe the dynamics
of the sound source. For values of the air sac pressure
high enough, the labium presents oscillations. For increas-
ing values of the parameters describing the restitution, the
oscillations will present higher fundamental frequencies.
Moreover, the values of x can be used to model the fluc-
tuating flow velocity at the entrance of the tract, which
can be modelled as a tube. Then, the output of the tube
can be used to excite the oro-esophageal cavity, modelled
as a Helmholtz resonator [4], and its output will be our
model for song. In this way it is possible to synthesise songs
with a low dimensional mathematical model whose param-
eters are easy to interpret in terms of physiological and
anatomical observations. In order to synthesise a birdsong
syllable, we start in a region of the parameter space where
no oscillations occur. If we move our parameters within the
phonating region, the labia will start to modulate the airflow,
and sound will be generated. During the phonating interval
the bird might change its parameters in order to alter the
acoustic features of the vocalised sound. For example, it
can increase the tension of the labia, while remaining in the
phonating region. The end of the vocalisation will occur

as the parameters are moved back to the non-phonating
region of the parameter space. Typically there are two very
different time scales in the problem: the modulations in
the physiological parameters representing the tension of
the labia and the pressure occur in the time scale of the
syllable (typically between 50 and 100 ms). The labia, on
the other hand, will oscillate at a much faster time scale
(typical oscillation frequencies being in the order of kHz).

2. Bifurcations and sound

Qualitative changes in the dynamics observed when the
parameters of a nonlinear system are varied are called bi-
furcations. In the framework of our problem, it is perti-
nent to investigate the way in which stationary solutions
(corresponding to non-phonating situations) might start to
oscillate. Figure 2 displays regions in the parameter space
where qualitatively different dynamics take place. Actu-
ally, the two ubiquitous ways to turn oscillations on in bi-
dimensional dynamical systems are present in this bifur-
cation diagram: a Hopf bifurcation, for high values of the
restitution, and a saddle node in a limit cycle (5).

In the first bifurcation, oscillations are born with zero
amplitude and well-defined frequency. For that reason os-
cillations born in this bifurcation can be used to synthesise
tonal sounds. They were in fact used to study canary songs,
which are characterised by spectrally pure notes with few
overtones. By varying the pressure and tension parameters
in time, within the region of the parameter space where Hopf
bifurcations take place, it is possible to reproduce the starts,
stops, timbre, and continuous changes in pitch of canary
song (2). But not every species uses only tonal sounds. The
most widely studied songbird, the Zebra finch, alternates
tonal sounds with syllables that are spectrally very rich;
sounds that are made up of many equally spaced harmonics.
Moreover, there is a very precise relationship between the
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Contemporary Physics 3

Figure 2. Bifurcation diagrams. For different values of the parameters, the physical model ruling labial dynamics presents qualitatively
different regimes (left). A simplified dynamical system, called normal form, presents the same scenarios (right). The panels correspond to
the solutions, in phase space, that the models present for parameters in each of the numbered regions. Oscillations occur for sufficiently
high values of the pressure. The generation of syllables occurs whenever the parameters drive the system into the regions where oscillations
take place. In that way, the labia will oscillate, the airflow will be modulated, and sound will be produced. The lines separating the regions
of the parameter space are called bifurcation curves. Qualitatively different ways of starting oscillations exist. In a Hopf bifurcation, an
oscillation with a well-defined frequency and zero amplitude is born. In a SNILC (saddle node in limit cycle) bifurcation, an oscillation
with zero frequency and finite amplitude is born.

harmonic content and fundamental frequency of the uttered
sounds; low frequency sounds are harmonically very rich,
while the higher frequency sounds are more tonal. That
relationship was investigated in many syllables uttered by
different birds, and the functional form relating those acous-
tic features was the same for all of them [5]. Remarkably,
it is precisely what can be expected if a periodic signal
is born in a saddle node in a limit cycle bifurcation. In
this mechanism, when the periodic oscillation is born, the
phase space is left with the ghost of the two fixed points
that were annihilated in the bifurcation, which slows down
the passing by trajectory. The simplest dynamical system
presenting this effect is

dθ

dt
= � − sin θ,

with θ a phase. The stationary solutions of this system
exist as long as � < 1. For � > 1, periodic oscillations
exist, but notice that for � = 1 + ε, the solutions will
present a very small phase velocity as θ ≈ π/2. The way
in which the period of the oscillations diverge as ε → 0
can be analytically computed [6], and this functional form
is precisely what is recovered in the vocalisations of the
Zebra finch.

The model presented for the labial motion was studied
in detail [3]. The equations were integrated for different
values of the control parameters (strength of the restitution,
air sac pressure), and regions of the parameter space were
identified for which the solutions presented qualitatively
similar dynamics. The boundaries between those regions
are called bifurcation lines. It is possible to simplify the
original system of equations, which emerges from physical
considerations, to a simpler one capable of displaying the
same dynamical regimes. The technique is known as normal

form reduction, and for the region of the parameter space
relevant for our problem leads to [7]:

dx

dt
= y,

dy

dt
= −αγ 2 − βγ 2x − γ 2x3 − γ x2 y + γ 2x2 − γ xy,

where the parameters α, β can be mapped to the air sac
pressure and syringeal tension, respectively, and γ is a time
constant that allows one to obtain oscillations of the desired
spectral content and fundamental frequency for the zebra
finch vocalisations [7]. This reduction not only replaces a
complicated equation by a simpler one: the parameters in-
volved have been reduced to a minimum. In Figure 2 (right)
we display the different solutions that the reduced system
can display for different values of the parameters. They
are equivalent to the ones present in the original (physical)
model and displayed in Figure 2 (left). Paths in parame-
ter space (α(t), β(t)) that start in a non-phonating region,
visit the phonating region, and return to a non-phonating
zone will allow us to synthesise syllables. Remarkably, the
trajectories in parameter space can be extremely simple,
but the generated sounds will present delicate relationships
between different acoustic features that are neither deter-
mined by the details of the physiological instructions, nor
by the details of the physical model, but by the underlying
dynamics.

3. What do birds think of all this?

Beyond this sophisticated mathematical analysis, are the
synthetic sounds good enough? How can we test the per-
tinence of this low-dimensional reduction? The process of
building confidence on this route of modelling has been
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Figure 3. Recorded and synthetic song. From a recorded song
(upper panel), it is possible to reconstruct the parameters that
would allow the model to generate sounds with similar pitch and
spectral content (lower panel).

slow. The first suggestion that even with minimally com-
plex gestures of pressure and tension one could generate a
variety of different sounds was proposed in [2]. The first
validation involving experimental data required the simul-
taneous measurement of song, air sac pressure, and tension
of different syringeal muscles. In [8] we performed this first
test, synthesising song by feeding a low-dimensional model
for labial dynamics with physiological variables, acting as
time depending parameters (k(t), psub(t)). The synthetic
songs generated with the model were similar to the recorded
songs. That conceptual exercise was repeated for different
species (including non-songbirds [9]) and for models with
the capacity to account for different sounds [10]. In [10],
a procedure was described to reconstruct the parameters
representing air sac pressure and syringeal tension from the
song, and the reconstructed parameters were compared with
the measured data. But still the key issue was whether the
tests designed to compare the synthetic sounds generated
with the model were ‘good enough’. How to define a mea-
sure of success? The sonograms look similar, as displayed in
Figure 3, and the songs sounded good to us, the researchers
working on the problem, but what about for the birds? It was
necessary to find a way to ask the birds. And first, it was
necessary to ask neuroscientists for the language in which
the question had to be formulated.

Dan Margoliash and his group held the key to address this
issue. He had previously reported that when a sleeping bird
listens to a recording of its own song, neurons in a certain
‘premotor’ part of the brain produce bursts of activity in
the same pattern as they did when the bird sang the song
[11]. The effect is specific to the bird’s own song (BOS):
when a bird listens to another bird’s song, or to its own
song played backwards, those neurons don’t fire in the same
pattern. In fact, they don’t fire at all. Despite all Zebra

finch songs sharing some acoustic features, and regardless
of each individual having learned from a specific tutor,
each individual develops a unique song, and these highly
sensitive neurons respond, during sleep, to that song only.
Besides its intrinsic importance in the process of birdsong
learning, this effect provided the perfect opportunity to test
the model: would these highly selective neurons respond
to synthesis of the song in the same way they respond to
the bird’s own song? Ana Amador, working at Margoliash’s
lab, performed those experiments. From recorded songs,
the motor parameters were reconstructed (see Figure 4).
Then, those reconstructed motor gestures were used to drive
the low-dimensional model for the labial motion, and its
solutions were used to estimate the sound waves generated
by the vocal organ [10]. Finally, the synthetic song was
played to the sleeping bird whose song was being fitted
[12].

In the experimental protocol, each song was played 20
times to the bird while the activity of a selective neuron
was recorded. For a given neuron, the BOS would elicit
a response at a specific time when the BOS was played.
When the synthetic song was played, without changing
the location of the electrodes, the recorded neuron would
either spike at the same temporal location within the song,
or not spike at all. On average, the neurons responded to
synthetic songs about 60% of the time. In the protocol,
the same neurons were measured also when variations of
the synthetic songs were played to the sleeping bird. For

Reconstructed tension Reconstructed pressure

Mathematical Model

Recorded Song

Synthetic song
50 ms

Fr
eq

ue
nc

y 
(H

z) 104
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Figure 4. Reconstructed instructions. A recorded song is divided
into successive time windows. The parameters of the normal form
that allow synthesising sounds with similar pitch and spectral
content are reconstructed (middle panels). Then, the reconstructed
instructions are fed into the mathematical equations describing
labial dynamics. Finally, the synthetic sounds are played to the
sleeping bird whose song was modelled in the first place.
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Figure 5. Low-dimensional model for canary air sac pressure. In the case of the domestic canary, the patterns used to generate different
syllables are shapes near and dear to nonlinear dynamicists: they are the sub-harmonic responses of a periodically forced nonlinear
oscillator. The top panels represent four sonograms of typical canary syllables. Air sac pressure patterns recorded during the production of
the sounds are shown in the middle panels. Different solutions of a periodically forced neural oscillator are displayed in the bottom panels.

example, we generated different songs, changing the dissi-
pation parameter in the equations describing the effect of
the Helmholtz resonator used to model the oro-esophageal
cavity. We found that the response of the neurons decreased
dramatically.

4. The instructions

The research described in the previous sections showed
that much of the acoustic richness of birdsong could be re-
produced when relatively simple physiological instructions
operated the nonlinear avian vocal organ. Yet, non-linear
dynamics might provide some interesting perspectives at the
moment of unveiling the mechanisms behind the generation
of the instructions themselves. A well-described network of
interconnected brain nuclei generates these motor patterns,
which control the syringeal muscles, the upper vocal tract
and the respiration [13]. Despite continuous efforts, the role
played by the different neural nuclei remains elusive.

The domestic canary (Serinus canaria) offers an inter-
esting clue. In Figure 5 we can see the sonograms cor-
responding to different syllables uttered by a canary (top
four panels). Below each syllable, the pressure pattern used
for its production is displayed. In order to perform those
measurements, a plastic cannula connected to a pressure
transducer is inserted into the thoracic air sac [14]. Despite
their seemingly arbitrary nature, those patterns have a long
history in the field of non-linear dynamics: these are the
time series that are expected whenever a nonlinear system
presenting a characteristic frequency is periodically forced
with different forcing frequencies. As long as the forcing
frequency to the natural time scale of the driven system is
similar, 1:1 locking is expected to occur. As the forcing
frequency is changed, other sub-harmonic responses are
obtained [15]. The four panels at the bottom of Figure 5
display the solutions of a mathematical model describing

the dynamics of a forced neural oscillator, for different
values of the forcing frequency. It is premature to conjecture
where these two time scales are generated in the neural
architecture of the canary, although it is plausible that they
reflect the interaction between telencephalic instructions
and respiratory activity [15,16]. Yet, it is remarkable that
the final output of an extremely complex neural architecture,
consisting of thousands of highly nonlinear dynamical units
such as neurons, is that of a low-dimensional non-linear
dynamical system. The emergence of non-trivial, yet low-
dimensional dynamics out of coupled non-linear units is an
open problem in statistical physics, and birdsong is an ideal
field for exploring it.

5. Conclusions

All aspects of behaviour involve instructions generated at
the neural level, the response of a peripheral device to both
those instructions and the environment, and feedback from
the periphery to the nervous system. For that reason it is
pertinent to explore the biomechanics involved in a com-
plex behaviour, as part of the strategy to understand the
phenomenon. In the case of birdsong, the avian vocal organ
is a highly nonlinear device. It is for that reason that it
is particularly important to unveil which features require
the explicit coordination of delicate instructions, and which
will naturally emerge from the nonlinear nature of the bio-
mechanics involved.

It was surprising that a low-dimensional dynamical
system for the labial motion, driven by a couple of time-
dependent parameters could allow us to synthesise songs
that passed the test of highly selective neurons in the brain
of songbirds. This dimensionality reduction might also play
a role in the process of elucidating how the neural system
underlying the behaviour operates. Relating acoustic fea-
tures to patterns of neural activity might be complex for the
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6 G.B. Mindlin

simple reason that the dimensionality of the acoustic de-
scription is very high. It might be the case that reconstruct-
ing motor gestures ends up providing a system of motor
coordinates that allows a more direct interpretation of the
neural activity patterns. The observation that bursts of activ-
ity in the pre-motor nucleus HVC were locked to significant
instances of the motor coordinates [12] suggests that the
strategy is worth exploring.
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