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Abstract. Birdsong is an active field of research in neuroscience, since songbirds 
learn their songs through a process similar to that followed by humans during 
vocal learning. Moreover, many of the vocalizations produced by birds are quite 
complex. Since the avian vocal organ is nonlinear, it is sensible to explore how 
much of that complexity is due to the neural instructions controlling the vocal 
organ, and how much to its nonlinear nature. In this work we first review some 
of the work carried out in the last years to address this problem, and then we 
discuss the existence of noisy sound sources in the avian vocal organ. We show 
that some spectral features of the song produced by the Zebra finch (one of the 
most widely studied species) can only be explained when vortex sound is taken 
into account.
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1. Introduction

Behavior emerges from the interaction between a nervous system, a peripheral system, 
and its environment [1]. That is certainly the case in vocal production, where many 
vertebrates generate highly complex communication signals through sound generating 
mechanisms involving dierent parts of the motor system. Interesting enough, species 
evolutionary distant as humans and songbirds produce their communication sounds 
through the same basic processes, engaging the motor systems in charge of controlling 
respiration, the vocal organ and the upper vocal tract [2, 3] (Titze 1994). In the case 
of birdsong production, respiratory gestures generate airflow, which induces connec-
tive tissue masses to oscillate. Muscles innervating the holders of these tissues can 
reconfigure them. This aects the tissues themselves, modifying some of the spectral 
features of the modulated airflow. This is finally filtered by the upper vocal tract, 
which can also be dynamically adjusted. This conceptually simple scenario presents 
one caveat: the dynamics of the vocal organ, and in particular the dynamics of the 
oscillating tissue is highly nonlinear. For this reason, it is dicult to predict, even 
knowing the activity of the motor systems involved in phonation, which acoustic fea-
tures are to be expected in the output sound. It is dicult to unveil which of the sound 
features are explicitly coded in the nervous system, and which emerge as eventually 
simple physiological instructions operating on the nonlinear vocal organ. This is one of 
the reasons for which computational modeling is instructive in the field of phonation.
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The modulation of airflow by oscillating tissue is not the only way to generate 
sound that vertebrates use. Many interesting and subtle phenomena are engaged in 
the process of sound production. Yet, the modeling in the case of oscillating tissue is 
where progress has been more significant in the last decades. Despite its complexity, 
low dimensional models (i.e. models involving a low number of variables, whose time 
evolution is ruled by a small number of equations) have been implemented and tested 
for their perceptual salience [15]. In this work we review this aspect of the problem, and 
move beyond it to describe the noisy aspects of birdsong production.

2. Methods

2.1. Sound sources I: mass injection

Figure 1 displays the vocal phonating device of oscine birds (a set of approximately 
four thousand species that share with humans the need of a tutor in order to learn the 
species-specific vocalizations). At the juncture of the bronchi and the trachea, pairs 
of labia are capable of modulating the airflow. Therefore, during phonation, there is a 
periodic injection of air into the trachea. The rate of mass injection for unit of volume 
q can be written in terms of the air velocity v, density ρ and the lumen’s area A as

q Av.ρ=

The dynamics of the density perturbations induced by this mass injection, at the 
base of the trachea, will be given by

t
c

q

t
,

2

2 0
2 2ρ
ρ

∂
∂
− ∇ =

∂
∂

with c0 the sound velocity [18]. Therefore, it is the labial dynamics that is responsible 
for the time dependence of the lumen’s area A, and therefore acts as a sound source 
in the linear approximation of the problem. The lumen’s area will be the product 
of a transverse, constant length, and a variable whose dynamics describes the labial 
motion. In the following section we describe models proposed to account for the labial 
oscillations.

2.2. Low dimensional models for oscillating tissue

We can start a model for oscillating tissues by representing them as ‘blocks’ attached to 
springs, which are introduced to portray the elastic nature of the tissues [4] (Flanagan 
and Ishizaka 1973). In this way, the problem of modeling the self sustained oscillations 
that can give rise to phonation is reduced to solving two specific issues: the nature of 
the additional forces on the masses capable overcoming the dissipation, and the eects 
responsible for bounding the motion that is established when the new forces overcome 
the losses.

One way to compensate the energy losses of a mass attached to a spring in the 
presence of viscosity is by applying a force whose direction changes together with the 
direction of the velocity. This is the opposite strategy followed by the dissipation in 

https://doi.org/10.1088/1742-5468/aa54d8


Avian vocal production beyond low dimensional models

4doi:10.1088/1742-5468/aa54d8

J. S
tat. M

ech. (2017) 024005

its attempt to stop an oscillation. In the framework of our problem, the responsibil-
ity of carrying out this task lies on the inter-glottal pressure. In this way, one of the 
first attempts to build a computational model for phonation was based on designing 
a configuration presenting an inter-glottal pressure that was higher when the masses 
were departing from each other than when they were approaching.

2.3. The one mass model

In the one mass model (Titze 1994), a simple block of mass m attached to a spring, rep-
resents the oscillating tissue (the actual phonating device consists of two mirror copies 
of this configuration). The airflow, after passing through the space between the oppo-
site masses, enters the trachea. In this model, the tube plays a key role, through the 
inertia of the air in it. As the masses depart from each other, the volume flow increases, 
and due to the inertia of the air in the tube, so does the inter-glottal pressure. A simi-
lar argument can be used to explain suction when the masses approach each other. In 
this way, the delayed response of the vocal tract is the key element for generating force 
acting in the same direction as the velocity.

This model was historically important. The first conceptual models for phonation 
were mostly based on the action of the Bernoulli pressure, which by itself is not sensi-
tive to the direction of motion of the tissue (and therefore not capable of overcoming 
energy losses). On the other hand, the one mass model assumes restrictive conditions 
on the plausible oscillating frequencies of the device, since the mass of the tube has 
to behave as a single mass element. That is only a good approximation as long as 
the masses oscillate at low frequencies. Our next model involves a mechanism that 
is independent of a vocal tract. As it is usually the case, abandoning a model implies 
giving up some simplifying hypothesis. We will need to relax the hypothesis that the 
oscillating tissue behaves as a simple mass, whose unique degree of freedom is a lateral 
displacement.

Figure 1. A schematic of the avian vocal organ is shown. At the junctures of the 
bronchi and the trachea, two pairs of labia modulate the airflow injected into 
the trachea. The two sound sources can be independently controlled. The main 
parameters in the model are the labial tension and the air sac pressure.

https://doi.org/10.1088/1742-5468/aa54d8
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2.4. The two mass model

Direct observations have shown that vocal folds in humans, or labia in birds, do not 
behave as rigid masses. They are made of tissue capable of sustaining both lateral 
displacements and wavelike motions of the cover layers. Ishizaka and Flanagan were 
the first to model this internal structure of the oscillating element in terms of two 
coupled masses [4]. Many versions of this conceptual model have been proposed in 
the literature, but they all share a search of balance between mathematical sim-
plicity and a sensible description of the diversity of physical phenomena shaping 
the force on the oscillating tissue [5, 6]. In terms of the language presented in the 
previous section, a computational implementation of this model starts by writing 
Newton’s equations for the displacements from the equilibrium positions x1 and x2 
of two masses m1 and m2:

x

t
y

d

d
i

i=

= − − − −
y

t m
f K x B x y k x x

d

d

1
, ,i

i
i i i i i jc( ( ) ( ) ( ))

for i, j  =  1 or 2 for the lower and upper masses respectively. The functions K and B 
represent the restitution and damping of the tissue, and f stands for the hydrodynamic 
force on the masses, and kc is a constant describing the coupling strength between the 
masses. In the particular functional forms for these functions is where the art of the 
modeler resides. These functions are typically defined through dierent functional forms 
depending on the values of the variables. This allows accounting for the qualitative 
changes in stiness and dissipation that occur when the masses collide, or the change 
of the hydrodynamic force depending on whether the masses present a convergent or 
divergent profile. A number of researchers have, over the years, iterated this model 
that constitutes a very sound equilibrium between a realistic description of the physics 
involved and the mathematical simplicity that comes when a problem is formulated in 
terms of a few ordinary dierential equations [12].

The numerical integration of these models has allowed us to gain intuition on the 
mechanisms behind sound production. In order to be able to oscillate, the lower and 
upper masses must present a convergent profile when moving away from their mirror 
companions, and a divergent profile while approaching them. The physical reason is the 
following: when the labia present a convergent profile, the average pressure between 
them is close to the pressure at the bottom of the system. When the masses present a 
divergent profile, the average pressure between the set of opposite masses is similar to 
the atmospheric pressure. In this way, the pressure is high when the opposite masses 
are moving away from each other, and low when they are approaching. This allows to 
overcome dissipative forces and to transfer energy from the airflow to the masses.

2.5. The flapping simplification

The main achievement of the two mass model is to capture the simultaneous exis-
tence of two modes: a lateral displacement and the flapping. In a seminal work, 
Titze managed to design a low dimensional model whose only dynamical variable 

https://doi.org/10.1088/1742-5468/aa54d8
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was the labial midpoint position (x), and yet it could capture the necessary interplay 
between the two modes [7]. He proposed a kinematic restriction on the labia, such 
that the area between the labia along the vertical direction would be compatible 
with the existence of a flapping. More specifically, calling a1 and a2 half the separa-
tions between the lower and upper labial edges respectively, he proposed the follow-
ing kinematics:

a a x
x

t

d

d
1 10 τ= + +

a a x
x

t

d

d
2 20 τ= + −

where a10, a20 describe the configuration of the labia at rest, and τ the travel time of 
across the labia of the upwards wave. In this way, it is guaranteed that the upper half 
separation decreases as the lower one increases. This kinematics also implies that the 
labia present a convergent profile as they separate from each other, and a divergent one 
as they approach. Once this dynamics is imposed, it is possible to compute the average 
pressure between the labia:

 p p
a

a
1 ,average sub

2

1

⎛
⎝
⎜

⎞
⎠
⎟= −

where psub stands for the sub-labial pressure. This enables us to write Newton’s equa-
tions in terms for the variable describing the mid point position of a labium:

x

t
y

d

d
=

y

t
kx by cx y p

a

a

d

d
1 ,2

sub
2

1

⎛
⎝
⎜

⎞
⎠
⎟= − − − + −

where it is assumed a restitution due to labial elasticity, a linear dissipation, and a 
nonlinear one accounting for energy loses that occur either when the labia reach the 
walls or at labial collision.

This model does not address why or under which conditions these two modes 
would lose stability; it simply assumes that kinematics and finds it compatible with 
a self-sustained oscillating dynamics. Interesting enough, the highly nonlinear nature 
of this model allows finding a rich set of dynamical responses. The plot displays a bi- 
dimensional diagram, where the axes correspond to two of the parameters in the prob-
lem (the restitution constant and the sub labial pressure). The lines separate regions 
of the parameter space where dierent dynamics can be found. The kind of dynam-
ics is indicated by the insets, which correspond to sets of trajectories to be found for 
dierent initial conditions, if the dynamical system is numerically integrated for a pair 
of parameter values within the region where the inset is displayed. Being a 2D model, 
the dynamics is never more complex than oscillatory. A two mass model is capable of 
displaying more complex asymptotic behavior, even chaotic one.

https://doi.org/10.1088/1742-5468/aa54d8
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2.6. The dynamical simplification

Given the tremendous simplifications assumed by the dierent models, it is legitimate 
to wonder why they work at all. It is dicult to accept that no other forces are pres-
ent, that the restitution can be approximated by a linear function, or that the nature 
of the nonlinear dissipation is really cubic, just to name a randomly selected, brief list 
of questions. The explanation is within the lessons learned in the last decades from non-
linear dynamics. There are algorithmic and systematic procedures that allow finding 
nonlinear changes of coordinates that convert the nonlinear system under study into a 
simpler one. Those procedures constitute what is known as ‘normal form reduction’. In 
this way, many dierent nonlinear systems get mapped into the same simpler system, 
which acts as a ‘model for models’. This is at the core of the success of many simple 
models: they might be mapped into the same simpler system that other sophisticated 
and detailed ones.

As an example, the equations describing the dynamics of the flapping model can be 
converted into

x

t
y

d

d
=

y

t
x x x y x xy

d

d
2 2 2 3 2 2 2αγ βγ γ γ γ γ= + − − + −

where α and β represent unfolding parameters, and γ a time scale constant. This 
dynamical system presents simpler nonlinear terms than the ratio of polynomials that 
was necessary to describe the average pressure between the labia [8]. As displayed in 
figure 2, the simpler system presents similar partitions of the parameter space, where 
qualitatively similar dynamics occurs.

Notice that both in the parameter space portrait of the complete physical model, 
and in the one corresponding to the normal form, one can transition from a region of 
the parameter space where the attracting solution is a fixed point (labia at rest), to 
another one in which the solution is a limit cycle (the labia oscillate, and therefore 
modulate the airflow, thus generating sound). In fact, there are dierent ways in which 
oscillations can be born. Transitioning from region 1 to region 2, an oscillation is born 
with a well-defined frequency and zero amplitude. This bifurcation is known as a Hopf 
bifurcation. On the other hand, transitioning from region 5 to region 2, the oscillation 
is born with a well-defined finite amplitude and zero frequency. This bifurcation is 
known as a ‘saddle node in a limit cycle’. In this process, low frequency solutions are 
spectrally rich, and in fact, as the parameters are moved, there is a specific relation-
ship between the spectral content of a solution and its fundamental frequency. That 
relationship was verified in zebra finches, where the spectral content and fundamental 
frequencies of segments from dierent syllables uttered by dierent birds were com-
puted. The relationship between these acoustic indexes was compared against the one 
expected if the oscillation was assumed to be born in a saddle node in a limit cycle [8]. 
Any model including this generic bifurcation would have been able to reproduce this 
acoustic feature: it is deeply rooted into the underlying dynamics, and does not depend 
on the details of the model.

https://doi.org/10.1088/1742-5468/aa54d8
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2.7. Birdsong: measuring the parameters and testing for salience

The first suggestion that with minimally complex gestures of pressure and tension 
one could generate a variety of dierent sounds was proposed in [16]. The first vali-
dation involving experimental data required the simultaneous measurement of song, 
air sac pressure, and tension of dierent syringeal muscles. Those measurements were 
plausible, and in fact, Suthers, Goller and others had already carried out a long-term 
program to unveil the parameters in charge of controlling the peripheral avian vocal 
organ in songbirds [9, 10]. The first test consisted in synthesizing song by feeding a 
low dimensional model for labial dynamics with physiological variables that were time 
depending parameters of the model [11]. The synthetic songs generated with the model 
were similar to the recorded songs, as it displayed in figure 3. That conceptual exercise 
was repeated for dierent species, including non-songbirds [12], and for models with the 
capacity to account for dierent sounds [13].

Beyond the similarity between the song and the synthetic sound at the level of 
the sonogram, pertinence of the model was explored in electrophysiological experi-
ments. There are neurons in a nucleus of the song system of songbirds (HVC) that 
respond selectively to the bird’s own song (BOS), i.e. they do not respond to the 
song of conspecific birds, reverse song; just to BOS [14]. Yet, these neurons would 

Figure 2. The lines separate the parameter space of a model into regions. Within 
each region we find parameters that lead to solutions that are qualitatively similar. 
Crossing the lines implies that the solutions undergo a qualitative change that is 
called a bifurcation. The physical model (top, left) and the normal form model 
(top, right) present similar regions. The solutions to be found in the regions are 
displayed in the bottom panels.

https://doi.org/10.1088/1742-5468/aa54d8
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respond similarly to BOS and to surrogate songs generated with a low dimensional 
model [15].

2.8. Filters

So far, we have analyzed the airflow modulation as the source of sound. But sound is 
not a delayed copy of that signal. As the pressure fluctuations travel throughout the 
rest of the vocal apparatus in its way to the atmosphere, a series of partial reflections 
add up to the originally injected signal and the result is a time trace whose spectrum 
reflects the geometry of the path travelled by the sound. If the tract can be approxi-
mated by a series of tubes, and the frequency is such that in each of the tubes the sound 
wave can be approximated as a plane wave, we can analyze the process as follows. 
From the dynamics of the source, we compute the flow and its time derivative. A linear 
combination of those (with coecients that depend on the tract and the way it couples 
with the source) represents the pressure fluctuations injected into the first tube. Let us 
call this function s(t). Then, if the pressure at the input of the tract is denoted by pi(t), 
the pressure reflected back at the end of the tube by pback(t), the sound velocity by c, 
the reflection coecient by γ and the tube length is L, then

( ) ( ) ( )= + −p t s t p t L c/i back

γ= − −p t p t L c/ .iback( ) ( )

A similar procedure can be carried out with subsequent tubes, where the injected signal 
is the transmitted pressure wave [16].

A remarkable feature in birdsong is the rapid modulation of the fundamental fre-
quency. Yet, the nature of the upper vocal tract does play a role in songbirds [17]. In 
the electrophysiological tests on selective neurons in HVC, where the responses elicited 
by surrogates generated with synthetic models were compared with those elicited by 
the BOS, the presence of a filter including the oroesopharingeal cavity was essential in 
order to obtain significant responses [15].

Figure 3. Sonograms of a natural song by a Zebra finch (top) and of a synthetic 
song obtained integrating a normal form with time varying parameters.

https://doi.org/10.1088/1742-5468/aa54d8
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3. Sound sources II: vortex sound

Human speech alternates voiced sounds with unvoiced ones. In the first family we 
include the vowels, and the physics involved in their production resembles the mech-
anisms described in the previous sections, with the vocal folds playing the role of the 
labia in birds. Unvoiced sounds (those not produced by the modulation of airflow by 
self sustained tissue vibrations) involve a dierent physics, studied in an area known 
as aeroacoustics. Some bird species, like the Zebra finch, also alternate sounds with 
regular oscillations with extremely noisy ones. In this section we present for the first 
time a discussion on the contribution of aeroacoustic sounds to birdsong production.

When the flow crosses the lumen and is injected into the trachea, it becomes sepa-
rated from the walls, forming a jet. This is a focused, high momentum region sur-
rounded by stagnant air. Between these regions, the air particles undergo a rotation, 
what is characterized quantitatively by the vorticity of the velocity field. In this way, 
the shear layers between the jet and the walls coalesce into irregular coherent struc-
tures traveling along the trachea, until they reach the glottis. At this point, a new 
acoustic mechanism has to be taken into account: sound production by vorticity past an 
obstacle [19, 21].

Howe (1998) derives an expression for the acoustic pressure fluctuation p generated 
when a vortex passes through a constriction:

p

t
c p w v

D

D
,

2

2 0
2 2

0 (   )→ →ρ− ∇ = ∇ ⋅ ×

where D stands for the material derivative, 0 ρ  for the ambient undisturbed density, 
and →ω and →ν for the vorticity and local velocity respectively. Notice that the vector 
product involves quadratic contributions of the velocity. Therefore, this equation can 
be interpreted as the second order correction to the homogeneous wave equation stud-
ied in linear acoustics. In this way, the eects discussed here should be added to the 
pressure fluctuations eventually generated by mass injection.

The solution of this equation can be found in an integral form:

p x t
x y

A M
v U A y

x y

A
S y t

x y

c M
,

sgn

2 1
d d

sgn
,

1A y
0

0

( ) ( )
( )

[( ) ] ( )
( )

→ → → ⎛
⎝
⎜

⎞
⎠
⎟∫ ∫ρ ω= −

−
+

× ⋅ ≡
−

−
−
+

∗

where A is the cross section at the observation point, M the Mach number, and U
→ ∗

 
stands for the ideal flow velocity field that would exist if the duct contained a uniform 
steady flow [21]. The brackets denote that the integration is carried out at the retarded 

time t t x y c M1ret 0/ ( )= − − + .
The previous integral can be very dicult to compute, but a qualitative picture can 

be sketched. The vector product in the integral v→ →ω× , computed in a regime such that 
a vortex travels in the axial direction, points in the radial direction. On the other hand, 
the unperturbed flow U

→
, in a set up with a constriction, has a negative radial comp-

onent before the vortex passes the constriction, and a positive one once the vortex has 
passed it. In our problem, the glottis is a constriction at the upper end of the trachea 
(see figure 1).

https://doi.org/10.1088/1742-5468/aa54d8
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We can write a phenomenological expression for the temporal dependence of the 
pressure fluctuation originated as a vortex passes through the constriction. In what fol-
lows, t  = 0 corresponds to the precise instant at which the vortex passes through the 
constriction. For times outside the range [−H/Uc, H/Uc] (with Uc the convection speed 
of the vortex through the construction), the scalar product defining the value of the 
pressure fluctuation will be zero (outside this time interval, the vortex is far away from 

the constriction and therefore v U 0( )→ → →
ω× ⋅ ≈

∗

). Only as t enters the interval above it is 

that there will be non zero pressure values. For negative times within this time interval, 
there will be a depressurization. As the vortex leaves the constriction behind, there will 
be a positive pressurization. As t grows away from the interval [−H/Uc, H/Uc], again 

v U 0( )→ → →
ω× ⋅ ≈

∗

. In this way, if α is the angle between the pipe axis (the direction of v→) 
and the field U

→ ∗

, we model the source S for an acoustic pressure pulse due to the con-
vection of one vortex as

W t U tsinc( ) ( ( ))ζ α=

with

t H U

U H t t H U H U

t H U

0, , 2

2 / , 2 , 2

0, 2 ,

c

c c c

c

( /( ))
( ) ( /( ) /( ))

( /( ) )

⎧
⎨
⎪

⎩⎪
α π=

∈ −∞ −
∈ −
∈ ∞

where ζ depends on the geometry of the system, Uc is the flow speed at the constriction 
and H is its characteristic length. The strength of this vortex (measured in terms of 
the volume integral of its vorticity, i.e. its circulation Γ) is assumed to be unitary. The 
actual computation of the amplitude ζ can be found in [21].

To account for the eect of a train of N vortex rings, we have to compute the 
convolution of the source term generated by one vortex with an arrival function I(t), 
consisting of a series of delta functions at the arrival times Tarrival, with amplitudes that 
reflect the strength of the arriving vortex, i.e. their circulation. In this way,

S y t W I t, d( ) ( ) ( )∫ τ τ τ= −
−∞

∞

where

( ) ( )∑ δ= − Γ
=

=

I t t nT .
n

n N

n

0

arrival

Notice that the circulation of the nth vortex nΓ  is proportional to the dierence between 
the arrival times of the nth and n 1 th( )−  vortex. This is because a large time between 
two consecutive arrivals means that the second vortex was generated far from the 
constriction, having gained circulation in its travel towards it. In our simulations, 
vortexes arrive whenever a uniform random variable (taking values between zero and 
one) exceeds a threshold (threshold  =  0.999) but it should not be ruled out that in 
a confined jet as the one involved in this problem, the backflow in the recirculation 
might play a role destabilizing the jet. Therefore, a lower dimensional description 
might be plausible [22].

https://doi.org/10.1088/1742-5468/aa54d8
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3.1. The eect of vortex sound in timbre

Zebra finch song presents complex features at two levels. The methods described and 
developed in the previous sections allow explaining the relationship between fundamen-
tal frequencies and higher harmonics in terms of the bifurcations involved in the onset 
of labial oscillations. But we are also presenting in section 3 a method for generating 
noise in a way which is consistent with the known anatomy of birdsong. In this sec-
tion we illustrate the eect of taking this sound source into account.

This noisy component adds a characteristic roughness to the timbre of the Zebra 
finch song. In fact, some Zebra finches incorporate at least one syllable in their rep-
ertoire where it is dicult to track a fundamental frequency, as the first sound in the 
song displayed in the first panel of figure 4. In that figure we also display a simulation 
where the sound is generated with the two mechanisms described in the text (second 
panel), as well as using only the mass injection mechanism (third panel). In some time 
intervals, there is phonation achieved exclusively with vortex sound (see the first sound 
in the first panel, which corresponds to a recorded song, and compare it with its syn-
thesis in the second panel). Figure 5 shows the spectra of the three songs. Notice that 
the vortex sound, responsible for the spectral features at high frequencies, is capable 
of reproducing features as the lack of spectral components within specific ranges (see 
the arrows in figure 5). Those features require specific modeling of the basic pulse, and 
carry information on the shape of the constriction. In our simulations, we used a sine 
function as described above, and the duration of the pulse was estimated in 0.2 ms. The 
selection of this value followed the inspection of the spectrum of the song to be mod-
eled, which is shown in figure 5(a). The duration of the vortex sound pulse was chosen 

Figure 4. As a vortex traveling along the trachea (left to right) passes through 
the constriction, the scalar product v U→ → →

ω× ⋅  changes sign (top). Therefore, the 
pressure pulse detected at a distant position x is a sine-like pattern with a time 
scale defined by H/2Uc. A sequence of vortex sound pulses.

https://doi.org/10.1088/1742-5468/aa54d8
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so that its spectrum would have the first two minima in those frequency values. The 
values are reasonable since they assume a constriction length of the order of 1 mm, and 
velocity U 5 m sc

1≈ − .
Songs incorporating both mechanisms resemble the alternation of fricatives and 

vowels in human speech. The analogy is actually quite precise: vortex sound is at the 
heart of fricative sounds, just as those generated through mass injection involve the 
same mechanisms than vowels.

4. Conclusions

Significant advances have been made in the elaboration of computational models for 
birdsong. The elaboration of a computational model using as parameters the actual 
physiological instructions allows integrating our understanding of the problem. In fact, 
a computational model can not only summarize a series of experiments but also turn 
them into an operational and predictive theory. In this work we both present a review 
of previous results as well as, for the first time, a discussion on vortex sound in the 
framework of birdsong production. This allows reproducing the characteristics of the 
timbre associated with high spectral components.

Behavior emerges from the interaction between a nervous system, a biomechani-
cal device, and its environment. How much of the complexity observed in a particular 
behavior depends on each of these factors? In the case of birdsong, a mathematical 
model describing the complex periphery as a nonlinear dynamical system leads to the 
conclusion that nontrivial behavior emerges even when the organ is commanded by 

Figure 5. Sonograms of a natural song by a Zebra finch (top) and of a synthetic 
song obtained integrating a normal form with time varying parameters, as in 
figure 3, but now vortex sound is added to the output.

https://doi.org/10.1088/1742-5468/aa54d8
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simple motor instructions: smooth paths in a low dimensional parameter space. An 
analysis of the model provides insight into which parameters are responsible for gen-
erating a rich variety of diverse vocalizations, and what the physiological meaning of 
these parameters is. One of the most significant contributions of this line of work is 
to warn about which features are independently controlled and which are bounded to 
appear highly correlated due to biomechanical restrictions.

Beyond their role in our understanding, computational models of phonation will 
play an important role in the development of bio-prosthetic devices for human pho-
nation. The feasibility of real time integration of low dimensional models driven by 
physiological instructions has been demonstrated in birds [20]. It is the use of low-
dimensional nonlinear mathematical models of the peripheral eector what allows the 
emulation to be computed with very small computational eort. This is an example 
of the plausibility of a kind of interface between the central motor pattern generator 
and the synthetic, bio-mimetic behavior. An advance towards models in which certain 
complex features of the motor behavior are understood in terms of the underlying non-
linear mechanisms of the peripheral eectors has the potential to enhance solutions of 
brain-bio-mimetic eector interfaces in many ways. If met by theoretical advances in 
the modeling of vortex sounds, this will open interesting possibilities of electronic bio-
prosthetic applications in impaired humans.
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