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We present a simple model for birdsong production in Oscine songbirds that allows us to study the acoustic
interaction between their two sound sources, as well as the acoustic coupling between sources and vocal tract.
This model allows us to study complex phenomena in which the traditionally assumed source-filter separation
hypothesis does not hold. We make testable hypotheses about the source of complexity in the song of some
birds.
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I. INTRODUCTION

Oscine songbirds are known for their vocal learning abili-
ties. Song learning has striking parallels to speech acquisi-
tion: both birds and humans must hear the sounds of tutors
during a sensitive period and must hear their own voice dur-
ing a sensorimotor period �1�. These fundamental similarities
and some advantages �repetitive and easily recorded behav-
ior, small number of neural nuclei involved, small number of
muscles involved� make birdsong learning a model system
for general sensory and motor learning �1,2�. Much of these
studies are focused on the neural control of these processes.
Yet the actual phenomenon �song production� involves the
interaction between the nervous system and a physical sys-
tem. Since the avian vocal organ is a nonlinear device �3�, its
response to the instructions sent by the nervous system can
be highly nontrivial. Some of these effects are the focus of
this work.

The basic mechanism of sound production in songbirds is
very similar to that used by humans to generate voiced
sounds in normal speech. Like the larynx in humans, the
avian vocal organ �the syrinx� generates sound through the
airflow-induced oscillation of small tissue masses called the
labia. This oscillation modulates in turn the airflow, giving
rise to an acoustic disturbance that propagates along the
tract. In Oscine songbirds the syrinx is a bilateral structure
located at the junction of bronchi and trachea �4�. It consists
of two separate valves �one in each bronchus� capable of
vibrating independently, which to some extent are also inde-
pendently controlled �5�. Some birds use only one valve for
singing, but some use both valves either alternatively or si-
multaneously �6�.

Until recent years, research in birdsong was mainly con-
cerned with the unveiling of the basic physical mechanisms
responsible for the acoustic output of the syrinx, either in
Oscines �7� and non-Oscines �8,9�. Recent theoretical efforts
at modeling �10,11� helped to start building a bridge between
neural instructions and song �12� and were experimentally
validated �13�. However, a good deal of basic questions on
the production of sound remain open, especially with respect

to sounds displaying complex features like frequency jumps,
period doubling, and subharmonic frequencies �see Fig. 1�
and phenomena like source-source interactions, etc. This
work builds on previous efforts �10,11� and aims at identify-
ing possible dynamical origins of complex sonograms in Os-
cines. By exploring these solutions we show that the genesis
of some complex acoustic features is not to be tracked to the
nervous system but to the peripheral system.

A mechanism by which the avian vocal organ adds com-
plexity to the sound was explored in the framework of the
two-mass model of the labia �3�. The model showed a quali-
tatively similar behavior to that of in vivo and in vitro sy-
ringeal oscillations, with period-doubling bifurcations and
transitions from periodic to nonperiodic dynamics. As in the
case of birds, complex vocalizations in human normal speech
were mainly supposed to be generated by intrinsic nonlinear
dynamics in the vibration of the mechanical apparatus �15�.

However, mobile tissues in the vocal organ can present
irregular oscillatory behavior even disregarding complex la-
bium structure. This can happen, for instance, if acoustic
feedback is considered �16�. A common assumption in the
field is the independence of the dynamics of the sound
source from that of the pressure wave in the vocal tract, what
is known as the source-filter separation hypothesis. Under
this assumption, the sound generation problem is highly sim-
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FIG. 1. A syllable of the grassland sparrow’s song �Ammodra-
mus humeralis� �14�. Subharmonic frequencies �appearing as side-
bands� are born in a bifurcation around 0.25 s. It might be instead
that a sudden change in the fundamental frequency occurs, from
around 3900 Hz �the single stroke� to around 325 Hz �the differ-
ence between adjacent strokes�, but such a low frequency is very
unlikely in this 10-cm-long bird.
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plified: the vocal tract only filters a spectrally rich signal
generated by the vocal source and cannot affect the dynamics
of the source. On the other hand, the sound emerging from
interacting source and tract is richer, more complex, yet
mathematically it is a rather involved problem. For this rea-
son, most studies focus on the regimes where the source-
filter separation hypothesis holds.

Recently, source-filter separation was experimentally
demonstrated in pure-tone dove vocalizations by Beckers et
al. �17�, but there are no experimental results regarding this
for complex vocalizations and there is no reason to assume it
a priori in those cases. Indeed, the source-tract interaction
was theoretically shown to be a possible dynamical origin of
complexity in the vocal organ �16�. The source-tract interac-
tion through acoustic feedback was first proposed in a model
for the human vocal folds �16�, showing that a very simple
�two-dimensional� model of the isolated source can display
complex dynamics when source and tract interact. The rea-
son for which this issue is important is that the interaction
between source and filter is a plausible mechanism by which
the avian vocal organ achieves the capacity to generate com-
plex sounds with simple neural instructions, providing a
beautiful example of the deep interaction between neural
system and body.

A concept associated to the source-filter separation hy-
pothesis is that of impedance �18�. In this framework the
vocal tract is considered a passive, linear system and there-
fore can be represented by its impedance, which is the ratio
of �complex� acoustic pressure to particle velocity. However,
this ratio is well defined only for a linear system �e.g., the
vocal tract alone�. In general, the vocal system is no longer
linear when source and tract interact, due to the nonlinear
processes that occur at the source.

In addition to labium structure and source-tract coupling,
the interaction between the two sound sources is also a pos-
sible dynamical origin of complexity. The source-source in-
teraction was first reported and experimentally demonstrated
by Nowicki and Capranica �19� in the call of the Black-
capped Chickadee �Parus atricapillus�. Acoustic and struc-
tural couplings �for instance, involving the cartilaginous pes-
sulus to which labia on both sides of the syrinx are attached�
were considered. The physical mechanism responsible for
such interaction, however, was speculative.

In this work we present a model for birdsong production
in Oscine songbirds that allows us to study source-source
and source-tract acoustic interactions. In order to achieve our
goal, we separate the sources of complexity: we develop a
model for labial oscillation involving a small number of spa-
tial modes. Based on previous works, a two-dimensional
model is developed in Sec. II for the single, isolated source.
In Sec. III we approximate nonlinear terms in this simple
model to get an even simpler form. Coupling between source
and tract is treated in Sec. IV, where a more general approach
than the impedance approach is discussed, and an expression
for the coupling is developed. In Sec. V the complete model
for two sources coupled to a tract with feedback is presented.
A further approximation related to the coupling strength is
made, in order to obtain a much simpler version of the com-
plete model. Some of the solutions of this model are illus-
trated in Sec. VI, where testable hypotheses concerning the

dynamical origin of complexity in birdsong are made and
simple experiments proposed. Finally, Sec. VII contains our
conclusions.

II. EXTENDED FLAPPING MODEL

Based on recent experiments by Goller, Suthers, and
Larsen �5,7,20,21�, an “extended flapping model” for labial
oscillation in songbirds was proposed �11�. This model was
built on a previous model by Titze �22�, which was first
proposed to account for the oscillation of human vocal folds.
Titze’s model is based on the experimental observation of an
upward-propagating wave in the surface of the vocal fold
�22,23�, typically referred to as a phase difference between
upper and lower portions of the fold. This wave is coupled to
the oscillation of the center of mass of the fold in such a way
that a “flapping” motion is realized, which allows a net en-
ergy transfer from the airflow to the fold oscillation. This
flapping motion is consistent with recent videography of the
avian vocal organ �3,21�.

The extended flapping model was first developed to ac-
count for large amplitude oscillations of the human vocal
folds �16�, and then a simplified version was proposed to
study motor control in birdsong �11�. It is composed of three
parts: �1� Newton’s second law for the departure x from the
prephonatory position of the midpoint of the labium, �2� an
expression for the �spatially averaged� interlabial pressure
pg, and �3� an expression for the pressure at the vocal tract
input pi:

ẋ = y ,

ẏ = − �x − by − cx2y − f0 + pg, �1�

pg = ps − �a2/a1��ps − pi� , �2�

pi = pi�x,y� . �3�

Here � is the linear restitution coefficient, b and c are the
linear and nonlinear dissipation coefficients, and f0 is an ex-
ternal force term, all per unit mass of the labium. ps stands
for the sublabial �bronchial� pressure �all pressures in this
work are defined per unit M, with M the mass per unit area
of the labium�. The entry and exit areas to the labial valve
are, respectively,

a1 = 2h�x01 + x + �y� , �4�

a2 = 2h�x02 + x − �y� , �5�

where h is the labial length �in the dorso-ventral direction�,
x01 and x02 are the prephonatory positions of the lower and
upper edges of the labium, respectively, and � is a phenom-
enological parameter related to flapping motion �22� �see
Fig. 2�.

In this simple model, the experimentally observed phase
difference between upper and lower portions of the labium is
imposed through Eqs. �4� and �5�—that is, the flapping mo-
tion. On the other hand, more complex models like the two-
mass model �15� spontaneously reproduce the experimen-
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tally observed phase difference, which is the basic
mechanism leading to self-oscillating motion �15,22�. How-
ever, the two-mass model, for instance, has a phase-space
dimensionality of 4; complex dynamics is expected to occur,
even considering only one source and disregarding the effect
of feedback. The rationale behind using the simple flapping
model instead of more complex or realistic models is that it
restricts the labial oscillation to a spatially simple mode. In
order to study the effect that source-source and source-tract
coupling might induce in the dynamics of the labia, we need
a system that for low coupling displays simple �two-
dimensional� dynamics. The flapping model is a good com-
promise between a realistic description and simplicity. The
final part of our analysis is the design of a set of experiments
that would allow us to distinguish between different mecha-
nisms for the generation of complex dynamics.

Note that the dynamics of the labium depends on the pres-
sure at the input of the vocal tract pi, Eqs. �1� and �2�, and
this in turn is related to the sound pressure wave being es-
tablished in the tract. Coupling between source and tract is
therefore taken into account in this model by giving a func-
tional form pi= pi�x ,y� in terms of all the variables describ-
ing the flow at the valve exit.

In presence of dissipation, a self-sustained oscillation
needs a net transfer of energy to the system to occur. This
happens whenever the system is subjected to a force which is
in phase with the velocity, such that the work done by the
force over the system in a cycle is positive. Note that the
vocal valve in flapping motion has a convergent profile
�opened to the bronchus� during the opening phase and a
divergent profile �opened to the trachea� during the closing
phase. Due to this asymmetry in the oscillation cycle, the
interlabial pressure pg is greater during the opening phase
than during the closing phase, which allows a net delivery of
energy from the airflow to the labial oscillation.

The phenomenological parameter characterizing flapping
motion is �, which stands for the time it takes the surface
wave to travel half the labial thickness H. Simple as it is, this
model reproduces a wide range of observed song elements
with only two basic motor gestures: bronchial pressure and
labia tension �10,16�.

III. LINEAR APPROXIMATION TO THE GEOMETRICAL
FLAPPING FACTOR

The geometrical flapping factor a2 /a1 in Eq. �2� appeared
in Titze’s original model as a result of computing the spatial
average of the interlabial pressure by means of a modified
Bernoulli equation �22�. This geometrical factor is respon-
sible for the net energy transfer from airflow to labial oscil-
lation, leading to self-sustained oscillations. Indeed, when
the system is decoupled from the vocal tract �pi=0 or atmo-
spheric pressure�, an oscillation starts in a Hopf bifurcation
at a value of the sublabial pressure ps

Hopf proportional to 1/�;
this threshold value increases indefinitely as �→0—that is,
when upper and lower edges of the labium are in phase �not
flapping at all�.

A first-order Taylor series expansion of the geometrical
flapping factor a2 /a1 in Eq. �2� around the fixed point
�x ,y�= �x̄ ,0� allows us to identify the mechanism for the loss
of stability of the fixed point. We perform the expansion and
get

a2

a1
� A − Dy + E�x − x̄� , �6�

where

A = ā2/ā1,

D = 2h��ā1 + ā2�/ā1
2,

E = 2h�ā1 − ā2�/ā1
2,

and ā1,2=2h�x01,02+ x̄�. Note that E=0 for a rectangular pre-
phonatory valve. Choosing x01=x02�x0 accordingly without
greater detriment of the dynamics, now Eq. �2� simply reads

pg � ps + �Dy − A��ps − pi� , �7�

with A=1, D=2� / �x0+ x̄�, and E=0. As expected, the Taylor
expansion in Eq. �7� unveils a term in phase with the velocity
on the right-hand side of Eq. �1� �ps� pi, otherwise flow
would be inwards�. In the case pi=0, the model can be writ-
ten as

ẋ = y ,

ẏ = − �x + py − cx2y − f0, �8�

with p=Dps−b, which is the standard form of the well-
known van der Pol relaxation oscillator �11�. This model
allowed a closer relationship of its parameters in terms of
physiological parameters �11,12� and has recently been ex-
perimentally validated �13�.

IV. COUPLING BETWEEN SOURCE AND VOCAL TRACT

When considered, coupling between source and vocal
tract has been historically assumed to depend on both the
flow at glottal exit U�t� and its time derivative dU�t� /dt
through appropriate coupling coefficients �22,24,25�. These
coefficients have been associated with the real and imaginary

FIG. 2. Geometry of the flapping model for the labia in the
avian syrinx, Eqs. �1�–�3�. Schematic ventral section of one side of
the syrinx �not in scale�. The model is symmetric around the dotted
line. Dashed line: prephonatory configuration. The actual profile of
each labium is approximated by a straight line. Airflow is upwards.
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parts of the vocal tract impedance, typically dependent on
nonlocal parameters such as vocal tract length and cross sec-
tion. This traditional approach relies on the source-filter
separation hypothesis: the dynamics of the active, nonlinear
source �the vocal valve� is independent of the propagation of
sound in the passive, linear filter �the vocal tract�. However,
when source and filter are coupled and let to interact, the
complete system is nonlinear and the impedance approach
fails to be valid �26�. Indeed, acoustic feedback was shown
to be a possible dynamical origin of subharmonic behavior in
a model of the human vocal folds �16�.

In an interesting work on human phonation by Story and
Titze �27�, pressure wave propagation in the vocal tract was
taken into account, avoiding the use of impedances to model
the vocal tract response. However, they restricted the cou-
pling to depend only on U�t� and not on its time derivative.

In order to take into account the effect of acoustic
feedback, in this section we will obtain an expression for
pi= pi�x ,y�—that is, the source-tract coupling represented in
Eq. �3�. The general picture of the dynamics of the pressure
wave in the vocal tract is that a pressure perturbation is in-
jected by the source at the input of the tract and then travels
along it. It is reflected at the end and the interfaces between
different sections of the tube and travels back to the base of
the trachea, eventually affecting the dynamics of the source
some time later. This dynamics can be taken into account
through simple boundary conditions as follows, under the
hypothesis that the sound wave in the tube is a plane wave.

The pressure at the vocal tract input pi is composed of two
parts: the pressure perturbations s�t� generated by a time-
variating flow U�t� injected locally by the valve and a back-
propagating sound pressure wave b�t� due to reflections oc-
curring in the tract:

pi�t� = s�t� + b�t − T/2� , �9�

b�t� = − �pi�t − T/2� , �10�

where T /2=L /c is the time it takes a sound wave to travel
the vocal tract length L at a speed c and � stands for the
reflection coefficient at the end of the tract �which we con-
sidered as a uniform tube for simplicity�. The source of pres-
sure perturbations s�t� is a function of all the variables de-
scribing the dynamics of the labium. Substitution allows us
to write Eqs. �9� and �10� more succinctly as

pi�t� = s�t� − �pi�t − T� , �11�

with T the round-trip time along the tract. The simple bound-
ary conditions, Eq. �11�, assume that the wave propagating
along the tract is a plane wave. This hypothesis can be ex-
pected to hold in some avian tracts, since we know from the
fundamentals of acoustics �18� that a rigid-walled waveguide
with a cross-sectional dimension much smaller than the
sound wavelength propagates plane waves. A typical song-
bird’s trachea is a tube roughly 1 mm wide, while the wave-
length corresponding to a typical frequency of 1000 Hz is
35 cm.

However, we do not expect the sound wave to be a plane
wave near the source. There, the emitted sound wave is of a
rather diverging nature. In order to get an expression for the
pressure perturbations s�t� injected by the valve, for the sake
of simplicity we assume that the vocal valve is a local emit-
ter of diverging spherical harmonic waves �see Fig. 3�, which
are waves of the form

s�r,t� =
P0

r
ei��t−kr�. �12�

The �complex� number P0 is determined by boundary condi-
tions, which are established at the source �that is, at the very
exit of the vocal valve where we know the air particle veloc-
ity v�t��. In order to set boundary conditions to determine P0,
we make use of the relationship between s and v for a spheri-
cal sound wave, at a distance d1 from the source. We take d1
to be much smaller than the wavelength �, but comparable to
the size of the source l according to our local picture. In this
way,

s�d1,t� = Z�d1�v�d1,t� , �13�

where Z=R+ i�I is the complex specific acoustic impedance
�18� �redefined in this work per unit M�. R and I are termed
the specific acoustic resistance and inertance, respectively,
and are given by

R =
	c

M

�kd1�2

1 + �kd1�2 , �14�

I =
	

M

d1

1 + �kd1�2 , �15�

where 	 stands for the air density and c the sound speed �18�.
R and I depend on the sound frequency f through the wave
number k=2
f /c. The constant P0 can be found by evaluat-
ing Eq. �12� in r=d1 and equating to Eq. �13�. We get

P0 = e−i��t−kd1�d1Z�d1�v�d1,t� , �16�

which does not depend on time, since the particle velocity is
also harmonic. By evaluating Eq. �12� at a distance d2 from

FIG. 3. Coupling between source and tract. Schematic ventral
section of the syrinx �not in scale�. Airflow driven by air sac pres-
sure is modulated by the airflow-induced oscillation of the labia,
injecting a sound pressure wave into the base of the trachea. Dashed
lines indicate the region of assumed spherical propagation.
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the source �that is, at the base of the trachea where plane
wave superposition is valid; see Fig. 3�, we finally obtain an
expression for the pressure perturbation s�t� at a distance d2

in terms of the particle velocity v�t� at the source:

s�d2,t� =
d1

d2
Z�d1�e−ik�d2−d1�v�d1,t� . �17�

For a spherical harmonic sound disturbance, the particle ve-
locity v is also a harmonic function of time. Thus we can
write v̇= i�v and rewrite the last expression as

s�d2,t� = Rv�d1,t� + Iv̇�d1,t� , �18�

where we have defined

R =
d1

d2
�R cos k�d2 − d1� + �I sin k�d2 − d1�� , �19�

I =
d1

d2
�I cos k�d2 − d1� −

R

�
sin k�d2 − d1�� . �20�

Notice that in general there is a phase difference between
pressure s and velocity v in Eq. �18�, because of the term in
phase with v̇. This result states that the phase difference be-
tween acoustic pressure and particle velocity is not only due
to the spherical geometry of the wave but also to the pressure
and velocity being evaluated at different positions. Keeping
this in mind, we drop d1 and d2 from the arguments of
v�d1 , t� and s�d2 , t� from now on and write simply v�d1 , t�
�v�t� and s�d2 , t��s�t�. Notice that if the end of the region
of spherical propagation is close enough to the region of
plane propagation �that is, d2−d1��� we can simply write
R�R and I� I. This is assumed from now on. Thus, Eq.
�18� becomes

s�t� = Rv�t� + Iv̇�t� . �21�

An expression for v�t� in terms of the model variables is
needed, in order to relate labial dynamics and pressure. Con-
sistently with our previous hypothesis �spherically diverging
flow near the source�, we assume that the flow through the
valve exit �area a2� takes a spherical profile, with area As at a
distance d1. However, the valve does not radiate in all direc-
tions, but only into a fraction of a spherical front. This can be
taken into account by writing As=4
d1

2q, with q�1. For
flow conservation in the very small region �of size d1���
between a2 and As let us write

v�t� =
a2�t�
As

v0 =
2hv0

As
�x0 + x − �y� , �22�

where v0 is an average particle velocity given by Bernouilli,
v0=	2psM /	. We finally substitute Eq. �22� into Eq. �21�,
throw the constant term �meaning a constant flow which does
not contribute to the acoustic pressure�, and redefine the co-
efficients to get

s�t� = 
�x − �y� + ��y − �ẏ� , �23�

which together with Eq. �11� constitutes an expression for
the pressure pi�t� at the input of the trachea in terms of the
valve variables. We have defined the coupling coefficients


 = 2h
v0

As
R , �24�

� = 2h
v0

As
I , �25�

which depend on the sound frequency f through R and I
�Eqs. �14� and �15��. A plot of 
 and � as functions of sound
frequency f is displayed in Fig. 4. Notice that 
 and � are
just a scaling of R and I, respectively. 
 takes the value zero
at f =0 and monotonically increases to a maximum value of
2h�v0 /As��	c /M� as frequency goes to infinity. � starts at
f =0, taking its maximum value 2h�v0 /As��	d1 /M�, and
monotonically goes to zero as the frequency goes to infinity.
Parameters 
 and � are not independent quantities; they are
related by


 = F� , �26�

where F=4
2f2d1 /c.
At low enough frequencies, coupling between source and

tract is mostly inertive, which means that the acoustic pres-
sure is proportional to the time derivative of the particle ve-
locity �the only surviving coefficient is ��. However, as fre-
quency is increased both terms contribute to s�t�. Eventually,
as frequency is increased even more, the coupling becomes
mostly resistive; that is, the acoustic pressure is in phase with
particle velocity. The crossover frequency �the frequency at
which both coefficients take half their corresponding maxi-
mum value� is

f1/2 = c/�2
d1� . �27�

In the case of considering two sources coupled to the
tract, Eq. �23� should be modified in order to account for the
pressure perturbations induced by both sources. This can be
done by simply adding the contributions from both sources,
labeled l �left� and r �right�:

FIG. 4. Coupling parameters 
 and � �Eqs. �24� and �25��, as a
function of sound frequency f . At low frequencies the only surviv-
ing parameter is �. The coupling in this case is said to be mainly
inertive; that is, sound pressure and particle velocity are almost 
 /2
out of phase. On the contrary, at high frequencies the only surviving
parameter is 
 and the coupling is resistive �sound pressure in phase
with particle speed�. Both parameters take their corresponding half-
maximum values at the crossover frequency f1/2=c / �2
d1�
�55 kHz. Parameter values are those of Table I throughout this
work, unless otherwise specified.
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s�t� = sl�t� + sr�t� = 
l�xl − �lyl� + �l�yl − �lẏl� + 
r�xr − �ryr�

+ �r�yr − �rẏr� . �28�

V. COMPLETE MODEL

The complete model for two sources coupled to a tract
with feedback is assembled by gathering Eqs. �1�, �7�, �11�,
and �28�. Notice that Eq. �28� introduces acceleration terms
on the right-hand side of Newton’s law �Eq. �1��; they are
inherited directly from the flapping motion and reflect the
fact that flow exiting the valve is not in phase with x. These
terms make the system lose the explicit form ẋ=F�x�, which
prevents us from using a standard Runge-Kutta numerical
integrator. In addition, an algebraic equation with time delay
is involved. However, the system can be put in a form ame-
nable to integration by means of a Runge-Kutta method. In
order to do so, we consider for the sake of clarity first the
case of one source coupled to a vocal tract and then the case
of two sources coupled to a vocal tract.

A. One source

Putting together Eqs. �1�, �7�, �11�, and �23�, the complete
model for one source coupled to a tract reads, so far,

ẋ = y ,

ẏ = f�x,y� + pg, �29�

f�x,y� = − �x − by − cx2y − f0, �30�

pg = ps + �Dy − A��ps − pi� , �31�

pi�t� = 
�x − �y� + ��y − �ẏ� − �pi�t − T� , �32�

which is not in explicit form ẋ=F�x� because of the term
with ẏ in Eq. �32�. To put the system in a form useful for
Runge-Kutta integration we first segregate the acceleration
term in Eq. �32� and write

ẋ = y ,

ẏ = f�x,y� + p̃g + �Dy − A���ẏ , �33�

f�x,y� = − �x − by − cx2y − f0, �34�

p̃g = ps + �Dy − A��ps − p̃i� , �35�

p̃i�t� = 
�x − �y� + �y − �pi�t − T� , �36�

pi�t� = 
�x − �y� + ��y − �ẏ� − �pi�t − T� . �37�

Notice the definition of p̃g and especially that of p̃i �in con-
trast to those of pg and pi�. We then solve for ẏ in Eq. �33�:

ẋ = y ,

ẏ = �f�x,y� + p̃g��1 − �Dy − A����−1, �38�

f�x,y� = − �x − by − cx2y − f0, �39�

p̃g = ps + �Dy − A��ps − p̃i� , �40�

p̃i�t� = 
�x − �y� + �y − �pi�t − T� , �41�

pi�t� = 
�x − �y� + ��y − �ẏ� − �pi�t − T� . �42�

Now we can apply a Runge-Kutta method to integrate the
system. Note the difference between the argument of pi in
Eq. �41� and that in Eq. �42�. This difference allows us to
numerically solve this system as follows: first integrate Eq.
�38� at time t along with definitions �39�, �40�, and �41�, for
a given pi�t−T� �either as an initial condition or computed
previously�; then compute pi with Eq. �42� to be used later at
the instant t+T. This is done by keeping track of the values
of pi at each time step from t−T to t �an interval of length T
before t�. Initial conditions for this system are x�t=0�=x0,
y�t=0�=y0, and pi�t� �−T ,0��= pi0�t�. Note that pi must be
initially defined in an interval of length T.

B. Two sources

We now consider the Oscine case of two sources coupled
to a tract. Sources are labeled l �left� and r �right�. The two-
source case is easily obtained from the one-source case. We

TABLE I. Standard set of parameter values throughout this
work, unless otherwise specified. Parameter values are the same for
both sources, unless otherwise specified.

�=3�108 �s−2�
b=2�104 �s−1�
c=2�108 �s−1 cm−2�
f0=4.9�104 �cm s−2�
ps=6�106 �cm s−2�
x0=0.04 �cm�
h=0.1 �cm�
�=1�10−4 �s�
M =5�10−3 �g cm−2�
A=1.0

D=5�10−3 �s cm−1�

=1.2�106 �s−2�
�=1.5�103 �s−1�
f =2500 �Hz�
d1=0.1 �cm�
q=0.175

L=2.0 �cm�
�=0.9

ca=3.5�104 �cm s−1�
cH=6.09�104 �cm s−1�
	a=0.00114 �g cm−3�
	H=0.00034 �g cm−3�
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write Newton’s law �Eq. �29��, the definition of f�x ,y� �Eq.
�30��, and the interlabial pressure pg �Eq. �31�� for each
source, plus Eq. �28�, which is common to both sources:

ẋl = yl,

ẏl = f l�xl,yl� + pgl, �43�

ẋr = yr,

ẏr = fr�xr,yr� + pgr, �44�

f j�xj,yj� = − � jxj − bjyj − cjxj
2yj − f0j , �45�

pgj = ps + �Djyj − Aj��ps − pi� , �46�

pi�t� = 
l�xl − �lyl� + �l�yl − �lẏl� + 
r�xr − �ryr�

+ �r�yr − �rẏr� − �pi�t − T� �47�

�j= l ,r�. Notice that pi is formed with the contribution from
each source, plus the reflected wave. Pressure pi is common
to both sources �because it is defined at the base of the tra-
chea�, as well as the sublabial pressure ps which is associated
to the air sac pressure.

Following steps analogous to those of the previous sub-
section, we segregate the acceleration terms in Eq. �47� and
write

ẋl = yl,

ẏl = f l�xl,yl� + p̃gl + �Dlyl − Al���l�lẏl + �r�rẏr� , �48�

ẋr = yr,

ẏr = fr�xr,yr� + p̃gr + �Dryr − Ar���l�lẏl + �r�rẏr� , �49�

f j�xj,yj� = − � jxj − bjyj − cjxj
2yj − f0j , �50�

p̃gj = ps + �Djyj − Aj��ps − p̃i� , �51�

p̃i�t� = 
l�xl − �lyl� + �lyl + 
r�xr − �ryr� + �ryr − �pi�t − T� ,

�52�

pi�t� = 
l�xl − �lyl� + �l�yl − �lẏl� + 
r�xr − �ryr�

+ �r�yr − �rẏr� − �pi�t − T� . �53�

Notice again the definition of p̃gj and p̃i, analogous to those
in the previous subsection. Now Eqs. �48� and �49� are two
coupled, linear equations in ẏl and ẏr. By solving for ẏr in
Eq. �49� and substituting into Eq. �48�, we get an expression
for ẏl:

ẏl = 
�1 − �Dryr − Ar��r�r��f l�xl,yl� + p̃gl�

+ �Dlyl − Al��r�r�fr�xr,yr� + p̃gr��

� �1 − �Dlyl − Al��l�l − �Dryr − Ar��r�r�−1. �54�

A similar result �interchanging labels l↔r� stands for ẏr.

With this, we can set our system in a form analogous to that
of the previous subsection:

ẋl = yl,

ẏl = 
�1 − �Dryr − Ar��r�r��f l�xl,yl� + p̃gl�

+ �Dlyl − Al��r�r�fr�xr,yr� + p̃gr��

� �1 − �Dlyl − Al��l�l − �Dryr − Ar��r�r�−1, �55�

ẋr = yr,

ẏr = 
�1 − �Dlyl − Al��l�l��fr�xr,yr� + p̃gr�

+ �Dryr − Ar��l�l�f l�xl,yl� + p̃gl��

� �1 − �Dlyl − Al��l�l − �Dryr − Ar��r�r�−1, �56�

f j�xj,yj� = − � jxj − bjyj − cjxj
2yj − f0j , �57�

p̃gj = ps + �Djyj − Aj��ps − p̃i� , �58�

p̃i�t� = 
l�xl − �lyl� + �lyl + 
r�xr − �ryr� + �ryr − �pi�t − T� ,

�59�

pi�t� = 
l�xl − �lyl� + �l�yl − �lẏl� + 
r�xr − �ryr�

+ �r�yr − �rẏr� − �pi�t − T� . �60�

Notice again the difference between the argument of pi in
Eq. �59� and that in Eq. �60�. The comments following Eqs.
�38�–�42� regarding the numerical integration of this system
are also valid here.

C. Small coupling approximation

One last approximation is worthwhile, in order to get
a much simpler form for our system. We would like to
know specifically whether it is possible to throw the terms
�Djyj −Aj�� j� j in front of 1 in the denominators of Eqs. �55�
and �56�.

There are often several ways to nondimensionalize an
equation. In order to make the correct approximation we pro-
ceed as in Ref. �28�. After noting that Aj is already nondi-
mensional and Aj �1 even for a nonrectangular prephonatory
glotis �Eq. �6��, nondimensionalization of the variables t and
x and the equations themselves make all variables and de-
rivatives have order 1, and lead us to

�Djyj − Aj�� j� j � 1 if � j � � j
−1 �61�

�j= l ,r�. This approximation can be interpreted in several
ways. The most direct interpretation is roughly that of small
coupling: the approximation is valid only if � j is sufficiently
small, which at fixed frequency depends on anatomical and
acoustic parameters. A second interpretation is related to the
phase difference between upper and lower portions of the
labium in the flapping motion, which is directly governed by
the value of � j �recall Eqs. �4� and �5��. From this viewpoint,
the condition is satisfied for small values of � j—that is, a
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small phase difference. A third interpretation is based on the
behavior of � j as a function of frequency. As � j decreases
with frequency �Fig. 4�, the condition is fulfilled for fre-
quency values large enough.

Note that this approximation allows us to neglect in addi-
tion the cross terms in the numerators of Eqs. �55� and �56�.
In the numerator of Eq. �55�, for example, we are referring
specifically to

�Dryr − Ar��r�r � 1,

�Dlyl − Al��r�r�fr�xr,yr� + p̃gr� � f l�xl,yl� + p̃gl.

The approximated system is finally

ẋl = yl,

ẏl = f l�xl,yl� + p̃gl, �62�

ẋr = yr,

ẏr = fr�xr,yr� + p̃gr, �63�

f j�xj,yj� = − � jxj − bjyj − cjxj
2yj − f0j , �64�

p̃gj = ps + �Djyj − Aj��ps − p̃i� , �65�

p̃i�t� = 
l�xl − �lyl� + �lyl + 
r�xr − �ryr� + �ryr − �pi�t − T� ,

�66�

pi�t� = 
l�xl − �lyl� + �l�yl − �lẏl� + 
r�xr − �ryr�

+ �r�yr − �rẏr� − �pi�t − T� �67�

�j= l ,r�, which is the main result of this work. Note that by
setting the coupling parameters of the second source to zero,
the one-source model is recovered �Eqs. �38�–�42�, in the
small coupling approximation�. Furthermore, by setting also
the coupling parameters of the first source to zero, the single,
isolated source is recovered �Eqs. �1�–�3�, with pi=0�. As
discussed in the Introduction, the isolated, single source is a
two-dimensional �2D� dynamical system, and for that reason
it cannot show complex dynamics by itself. That is why we
chose the flapping model to describe labial motion. In this
way the possible origins of complexity are separated �intrin-
sic dynamics of the source and coupling effects�, which al-
lows us to study the effect of feedback on the motion of one
source, as well as the effect of acoustically coupling the two
sources.

VI. SIMULATIONS AND THEORETICAL PREDICTIONS

A. Simulations

The model developed in this work for two sources acous-
tically coupled to a tract with feedback �Eqs. �62�–�67��, pre-
sents an extremely rich dynamics. Preliminary observations
show periodic and nonperiodic oscillatory solutions and
period-doubling bifurcations �see below; a detailed analysis

of the solutions of one and two coupled sources will be pub-
lished elsewhere�.

As an illustration of the richness of solutions, in this work
we show simulations corresponding to �a� only one source
being active and feedback is considered and �b� both sources
being active and feedback is not considered. The first case
occurs naturally in Oscine birds, since they have the capabil-
ity of actively silencing one side of the syrinx by means of
the gating muscles syringealis dorsalis and tracheobronchia-
lis dorsalis �20�, which are lateralized �5�. In our model, a
configuration with only one active source is simply achieved
by setting f0 of the second source �a parameter related to the
action of gating muscles �11�� to a sufficiently large value.
However, the second case might seem, physiologically
speaking, somewhat unattainable. Although the silencing of
one source is a well-established vocal maneuver in Oscines,
the choice of whether feedback is present or not is hardly
under the bird’s control. The reason for separating cases �a�
and �b� is dynamical in nature. As stated in Sec. II, we want
to separate the sources of complexity and show that feedback
alone is a possible dynamical origin of complex spectra in
sonograms, as well as source-source acoustic coupling alone.

Simulations of only one source active with feedback are
displayed in Fig. 5. Two possible vocal maneuvers are simu-
lated: �a� varying �, which is interpreted as varying the ten-
sion of the vS muscle and leads to a varying vocalization
frequency, and �b� varying ps, which is interpreted as varying
air sac pressure and leads to a varying sound intensity. Inter-
pretation of these vocal maneuvers was established in previ-
ous works �10,11�. A third simulation is also shown, where
we vary � �and 
 accordingly; see Eq. �26�� to study the
effect of different configurations of the valve-tract interphase
in the dynamics of the source. Recall that � depends on
anatomical parameters like d1 �Eq. �25��, which may be in-
terpreted as a measure of the distance between the vocal
valve and the base of the trachea.

Period-doubling and period-halving bifurcations are evi-
dent in Fig. 5. Notice that feedback is the only dynamical
origin of this rich behavior, because the active source is mod-
eled as a 2D system; it cannot show complex behavior by its
own. Indeed, for low coupling the dynamics of the system is
still two dimensional.

Let us now turn our attention to the case of two coupled
sources without feedback. The effect of feedback in our
model can be easily suppressed by setting �=0. The subhar-
monic behavior of the model in this case is illustrated in Fig.
6. Notice that there are frequencies appearing when both
sources are simultaneously active and acoustically coupled
�panel �a�� that are not present in the spectra of the isolated
sources �panels �b� and �c��. We isolated source l�r� from the
other source by setting 
r=0 and �r=0 �
l=0 and �l=0�, all
other parameters being kept the same as in Fig. 6�a�.

The effect of feedback was turned off on purpose by set-
ting �=0; hence acoustic coupling between the two sound
sources is the only dynamical origin of the subharmonic fre-
quencies displayed in Fig. 6�a�. The fact that the sources do
not display complex dynamics by themselves is illustrated in
Figs. 6�b� and 6�c�. The spectra of the isolated sources dis-
play a fundamental frequency plus harmonic overtones.
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B. Predictions

A way to explore and validate this model consists in
studying how the dynamics can be affected as certain param-
eters are changed. In particular, the density of the atmosphere
in which this model operates can be changed. Our model
predicts that qualitatively different scenarios will be obtained
as the density of the atmosphere changes, if the source of
subharmonicity is the acoustic interaction between source
and tract or if it is high-order modes of labial vibration. In

the following we will show that the coupling parameters 

and � should change appreciably when the bird is immersed
in a heliox atmosphere, in which nitrogen, comprising 80%
of ordinary air, is replaced with the less dense helium. He-
lium density is one-eighth that of nitrogen, so heliox has a
density 30% that of ordinary air. Sound speed in heliox is
74% greater than in air �29,30�.

Experiments with singing birds in a heliox atmosphere
were performed in the past. Heliox experiments were devised
to show that some birds actively coordinate the passive filter
characteristics of their vocal tracts with the output of the
syrinx �30�. There it was shown that the tract does shape the
spectral characteristics of the syringeal output, but has little
influence on the vibration of the membranes. Heliox was also
used to test the “whistle hypothesis” in doves �8�. In this
scenario, sound is presumably generated when eolic noise
�turbulence� is induced by forcing the airflow through a con-
striction in the syrinx. The fundamental frequency of the
emitted sound is determined by the resonances of the
tract that stabilize the acoustic disturbance. The experiment
indicated that also in these birds vocalizations are not
produced as in a whistle, but are the result of membrane
vibration. Analogous results were obtained for the psittacine
budgerigar �9�.

The expected outcome of each of the above discussed
heliox experiments was either a change in the fundamental
frequency of the vocalization in the same proportion sound
velocity changes or a change only in the resonances of the
tract with little change in the fundamental frequency. How-
ever, in this section we will show that other possible results
can be expected from a heliox experiment when the source is
acoustically coupled to the tract. These results are different
from those expected in the two traditionally considered high-
coupling scenarios, where the fundamental frequency
changes in much the same proportion as the resonances of

FIG. 5. Simulated vocal maneuvers for the model �Eqs.
�62�–�67��, with only one source active and feedback �the second
source is silenced by increasing ipsilateral f0 to a sufficiently large
value�. Sonograms of the acoustic pressure pi are shown here and in
the following figures. Parameter values are those of Table I through-
out this work, unless otherwise specified. �a� Varying �. Appearance
and disappearance of subharmonic frequencies are evident as � is
continuously decreased from 3.6�108 s−2 to 2.6�108 s−2. �b�
Varying ps. Subharmonic frequencies disappear as ps is continu-
ously decreased from 6.2�106 cm s−2 to 4.2�106 cm s−2. �c�
Varying � �and 
, according to Eq. �26��. Subharmonic frequencies
disappear as � is continuously decreased from 1900 s−1 to 900 s−1.

FIG. 6. Simulation of the model for two coupled sources �Eqs.
�62�–�67��, without feedback �feedback is suppressed by setting �
=0�. The restitution coefficients are set in this figure to �l=2.4
�108 s−2 and �r=1.4�108 s−2. Other parameter values are those of
Table I. �a� Sonogram of the acoustic pressure pi for the two
coupled sources. Notice the two dark strokes around 2000 Hz. Ev-
ery frequency in this sonogram is a multiple of the difference be-
tween these two frequencies. �b�,�c� Sonogram of the left and right
isolated sources, respectively. Parameter values are exactly the
same as in �a�, except the coupling coefficients: 
r and �r are set to
zero when source l is considered alone �isolated from source r�, and
conversely 
l and �l are set to zero when the source r is considered
alone. Notice that the sonogram in �a� is not just the superposition
of the sonograms of the isolated sources, but has in addition several
other frequencies that are sums and differences of multiples of the
fundamental frequencies of the isolated sources.
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the tube do: a whistle �8,9,30� or a pressure-controlled vi-
brating valve �9,25� like that of woodwinds or brasses.

In the following we will make explicit the dependence of
the coupling coefficients 
 and � on the acoustic parameters
	 �air density� and c �sound speed�. Recall first the definition
of the specific acoustic inertance I, Eq. �15�. We can write

I =
	

M

d1

1 + �kd1�2 � 	g�f� , �68�

with

g�f� =
1

1 + �kd1�2 , k = 2
f/c .

Note that the function g�f� depends on c through the wave
number k. However, g�f� takes the value 1 with zero deriva-
tive at f =0 and decreases to zero as frequency tends to in-
finity, taking its half-maximum value at f1/2=c / �2
d1� �Eq.
�27��. At low frequencies g�f��1 and it changes very little
with c when ordinary air is changed to heliox; that is why we
write g�f�. With Eq. �68� we can write the coupling param-
eter �, Eq. �25�:

� = 2h
v0

As
I � 	1/2g�f� , �69�

where we have used that v0�	−1/2 �see the definition follow-
ing Eq. �22��. Recall now the relationship between 
 and �,
Eq. �26�:


 = 4
2f2d1c−1� � 	1/2c−1g�f� . �70�

So far, Eqs. �69� and �70� give us the explicit dependence of
� and 
, respectively, on the acoustic parameters 	 and c.
Keeping in mind the behavior of g�f� discussed above, we
can say that when changing from ordinary air �a� to heliox
�H� the coupling coefficients should scale approximately as


H �
ca

cH
� 	a

	H

−1/2


a � 0.31
a, �71�

�H � � 	a

	H

−1/2

�a � 0.55�a. �72�

This result allows us to predict that noticeable changes may
occur in the sonograms when air is replaced by heliox. In
Fig. 7�a� we show a simulation of the model, Eqs. �62�–�67�,
for only one source active with feedback. Parameter ps is
continuously decreased exactly as in Fig. 5�b�. In the left
inset �ordinary air�, subharmonic behavior is evident at the
beginning of the sonogram. Subharmonic frequencies disap-
pear in a period-halving bifurcation around 0.05 s when ps
goes below the bifurcation value. When air is replaced by
heliox �right inset�, the subharmonic frequencies are not
present.

It is worth noticing that, contrary to what would be ex-
pected in other coupled vibrating-valve mechanisms like a
trumpet, a trombone, or woodwinds �9�, the fundamental fre-
quency almost does not change from air to heliox �see Fig.
7�a�: nonhalved fundamental frequency in left inset versus
fundamental frequency in right inset�. Nonetheless, coupling

is at work here, since appreciable changes in the sonogram
are evident.

On the contrary, a heliox experiment will show little dif-
ference if the dynamical origin of subharmonic frequencies
in the sonogram is the appearance of high-order modes of
tissue vibration. In Fig. 7�b� we show a simulation of an
asymmetric two-mass model without coupling to a tract,
which does not depend on air density or sound speed �15�. A
vocal maneuver similar to that of Fig. 7�a� is performed:
sublabial pressure is continuously decreased in order to show
an inverse period-tripling bifurcation. The subharmonic fre-
quencies are always present either in air or in heliox. We
want to point out that the only differences between left and
right insets in Fig. 7 are the values of air density and sound
speed.

However, we will be in a position of saying something
about the effect of acoustic feedback only in case a differ-
ence like the one shown in Fig. 7�a� is found. Given a bird, it
may be the case that the changes in density and sound speed

FIG. 7. Predicted sonograms in heliox experiments. �a� Simula-
tion of the model �Eqs. �62�–�67��, with only one source active with
feedback. Parameter ps is continuously decreased exactly as in Fig.
5�b� �a linear scale for the intensity is used here, to allow discrimi-
nation of tract resonances�. Left inset: ordinary air, where subhar-
monic frequencies are evident at the beginning of the sonogram. A
period-halving bifurcation takes place around 0.05 s. Right inset:
same maneuver under heliox. Subharmonic behavior is not present.
Not considering the bifurcation, it is worth noticing that, although
source and tract are coupled, the fundamental frequency almost
does not change from air to heliox. �b� Simulation of an asymmetric
two-mass model �15�, without coupling to a tract �the time series is
filtered afterwards, following the prescription of Eqs. �11��. Left-
side masses and elastic coefficients are 52% those of the right side.
The sublabial pressure is continuously decreased in a way analo-
gous to that in �a�. Left inset: ordinary air. An inverse period-
tripling bifurcation occurs around 0.05 s. Right inset: same maneu-
ver under heliox. The subharmonic behavior is still present. The
only evident change is the increase in the resonances of the tract.
Arrows approximately indicate vocal tract resonances: 4375 Hz and
13125 Hz �ordinary air� and 7612 Hz �heliox�. Higher resonances
lie beyond 20 000 Hz. Parameter values are those of Table I
throughout this work, unless otherwise specified.
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achieved by using heliox are not enough to lower the cou-
pling coefficients to values so that the effect of acoustic feed-
back is suppressed. Different ways to modify acoustic feed-
back should be attempted in that case—for example,
changing the vocal tract length by means of a cannula in-
serted at any position in the trachea �posible effects of a
tracheotomy are discussed in Ref. �17�� or other mechanical
or anatomical modifications.

VII. CONCLUSIONS

In this work we presented a model for the production of
sound in the Oscine syrinx, taking into account both source-
source and source-tract acoustic interactions. This model let
us study complex birdsong phenomena in which the vocal
sources are not independent of each other or the traditionally
assumed source-filter separation hypothesis does not hold.
We showed that there might be mechanisms, other than in-
trinsic nonlinearity of the labium, underlying complex fea-

tures in sonograms. In the absence of contrary experimental
evidence, the source-filter acoustic interaction must be taken
into account as a possible dynamical origin of complexity in
birdsong.

Based on theoretical considerations, we proposed simple
heliox experiments that would allow us to discriminate
among possible origins of complexity in sonograms. Our
model allows us to predict that subharmonic frequencies due
to source-tract coupling might dissapear from a sonogram, or
at least be greatly reduced, when the recording is made in a
heliox atmosphere. On the other hand, subharmonic frequen-
cies recorded in ordinary air would not be affected by heliox,
if they were due to intrinsic nonlinearity of the labium.
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