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In this work we build a convolutional neural network capable of identifying individual birds by their 

songs. Since the actual data available from each individual is very limited, we use a dynamical system 

capable of synthesizing realistic songs, to generate surrogate-training data. The different synthetic songs 

are the result of integrating the dynamical system with slightly varied parameters. We show that a data 

set built in this way allows us to train the network to successfully identify the different individuals in 

our study. In this way, we present a novel way to perform data augmentation using dynamical systems. 
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. Introduction 

Classification is a task that consists in assigning labels to the

lements of a set, from a pre-designed set of categories. In the last

ears, the training of layered arrays of nonlinear units has proven

o be one of the most effective ways to implement algorithmically

 classification task [1,2] . In this technique, known as deep learn-

ng, the weights of the connections between the units are progres-

ively adjusted by exposing the network, several times, to the la-

eled elements of a training set. Ideally, the procedure is repeated

ntil the network ́s output properly represents the labels. The ad-

ustment procedure is known as back-propagation [3] , and it is a

echnique known since the late eighties. It is the availability of fast

omputers, and large amount of data files for training, what al-

ows now deep learning to successfully compete with other ma-

hine learning techniques. 

In fact, the need of large amount of labeled data is, in many

ases, a limitation to use deep learning. In the absence of a suf-

ciently large data set for training, the network can be trained to

ssociate the elements in the training set with their labels, but it

ill not generalize. This means that new data cannot be correctly

lassified. In those cases, one strategy consists of generating more

raining samples by manipulating the existing ones through some

et of random transformations, giving rise to acceptable, surrogate

ata. This strategy is known as augmentation [2] . 
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One field where deep learning has been very successful is bird

pecies identification. Xeno-canto is a website where naturalists,

irders and scientists upload their labeled recordings, providing

he kind of massive data necessary for training a network to per-

orm the classification task. In fact, a yearly competition called

irdclef [4] challenges programmers with tasks that consist in the

dentification of birds within a selected set, from their songs. Even

ith the large amount of data available for the problem, augmen-

ation is necessary to successfully train the algorithms necessary

o perform the task. The most successful algorithms in the Bird-

lef competition use layered networks of units that receive as in-

uts images representing the temporal evolution of acoustic fea-

ures (either Mel coefficients, spectral content of windowed data,

tc. [5] ) 

The problem presents new challenges if one is interested in

dentifying individual birds of a given species. The amount of

ata per individual that is available for training is typically much

parser, and in principle, the sounds used by different individuals

ithin a species are very similar. Moreover, the typical augmen-

ation operations in the field of data science are inspired in the

rocessing of visual images of objects in physical space. Therefore,

hey might not enrich sufficiently the training data set for our task.

In order to overcome this issue, we generate surrogate data

y integrating a dynamical system capable of synthesizing realis-

ic birdsong [6,7] . The different files in the training set are ob-

ained varying the parameters representing each bird ́s physiol-

gy and anatomy, within biologically acceptable boundaries. We

rain a layered convolutional network completely with surrogate

ata, and show that a network trained in this way is capable of
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recognizing the subjects whose parameters guided the construc-

tion of the artificial training data. 

The paper is organized as follows. We describe the species un-

der study, and the characteristics of our problem in Section 2 . In

Section 3 we describe the model used to generate the surrogate

data that will be used to train the network, which will be de-

scribed in Section 4 . The performance of the network will be de-

scribed in Section 5 . We close with our conclusions and discus-

sions in Section 6 . 

2. The problem 

Approximately forty percent of the known bird species are

songbirds, a group of bird species that require some degree of

learning from a tutor in order to properly sing typical species

songs. The Rufous-collared Sparrow ( Zonotrichia capensis ) is a song-

bird, which requires exposure to a tutor in order to learn its song.

In template and subtropical regions, this is a unique combination

of sounds that will sing during all of its life. Its song, which lasts

between one to three seconds, is built from syllables: continuous

sounds with a modulated fundamental frequency. These can be

grouped in two parts [8] . The first one consists of a few (one to

five) introductory syllables, and is known as the theme. The sec-

ond part is a rapid trill, i.e. a repetition of several copies of a

downsweep syllable. In fact, this species has been studied in the

framework of what is known as the “acoustic adaptation hypoth-

esis”, which postulates that the structure of the song is the one

that minimizes its degradation in the bird ́s environment [9] . Ac-

cording to this hypothesis, for example, dense vegetation leads to

slower trills, so that reverberations do not affect the perception of

the syllables. In this way, the trills reveal features of the bird ́s en-

vironment, while the theme plays the role of an identity-bearing

signal. Fig. 1 displays a spectrogram of a Rufous-collared Sparrow

song. 

We worked with six individuals recorded in Parque Miguel Lillo,

Necochea, Argentina (38 °33 ′ 4 4 ′′ S 58 °4 4 ′ 43 ′′ O). The sounds were

registered at 44.1 kHz with a digital Tascam HD-P2 recorder, con-

nected to a directional Senheiser K6ME67 microphone. The record-

ings included a variable number of songs, from one to 10 songs.

Fig. 2 shows a set of images, where each one corresponds to the

spectrogram of a song produced by a different bird. These spec-

trograms were computed with Gaussian windows (standard devi-

ations of 128 points), processing segments of 512 samples with

successive overlaps of 256 points. The display of the spectrograms

considers a clipping below 1/10 0 0 the maximum value of the spec-

trogram. 

The parameters characterizing the song (the initial and final

values of the fundamental frequency for each syllable, the dura-

tion of each syllable, and the timing between syllables) varied very

little across different repetitions of the song; never more than 3

percent. In this way, if we need to build surrogate data starting

from the spectrograms of our scarce experimental data, the usual
Fig. 1. The song of a Rufous-collared sparrow. The first syllables constitute a theme, 

and are an identity-bearing signal. The trill is a set of rapid downsweep syllables. 

The rate of syllable production in the trill indicates the bird ́s geographical origin. 
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perations of augmentation would create very artificial images. In

act, data augmentation was conceived as a set of random opera-

ions to create believable looking images, but in the field of vision.

herefore, rotations, width shift, height shift and flipping, which

re sensible parameters for vision, are of little use for generating

 sensible training set for our problem, as these modified images

ould not be spectrograms of songs the bird could ever perform.

t is for this reason that we have taken a different approach. We

se a dynamical system describing the physics of birdsong produc-

ion, and synthesize realistic replica of the experimental data with

lightly changed parameters. Then, the spectrograms of these songs

ill be used to train and validate a layered network. 

. The model 

Birdsong is generated in a way that resembles how human

oiced sounds are produced. A bipartite structure called the syrinx

olds two pairs of labia at the juncture between the bronchi and

he trachea. Each pair of labia is set into an oscillatory mode when

 sufficiently strong airflow passes between them, just as the hu-

an vocal folds are when a voiced sound is uttered. These oscilla-

ions modulate the airflow, generating sound. In the last years, the-

retical and experimental works have identified the biomechanical

nd dynamical mechanisms that rule the behavior of the oscillat-

ng labia as birdsong is produced. The basic physiological parame-

ers that the bird needs to control are the air sac pressure, which

ontrols the strength of the airflow through the labia, and a set of

hysiological instructions sent to the muscles controlling the con-

guration of the syrinx. The configuration of this somewhat elastic

ubstrate affects the stretching of the labia, and therefore, the fun-

amental frequency of the oscillations at which these can oscillate

10] . 

The labia are assumed to be in a stationary position when the

ird is silent. As the parameter representing the air sac pressure

uilds up, it eventually reaches a threshold for the oscillatory mo-

ion. While the parameters of the problem remain in the phonat-

ng region of the parameter space, the airflow is modulated and

ound is produced. As the pressure is decreased, the sound will

ventually stop (i.e., the syllable will end). The qualitative change

n dynamics when the parameters are varied is known as a bifurca-

ion. Close to the parameter values where a bifurcation occurs, the

odel can be transformed into paradigmatic, simple equations. 

For this species [11] , it was shown that the system of equations

escribing the labial dynamics could be written as: 

dx 

dt 
= y 

dy 

dt 
= κγ 2 x − γ x 2 y + βγ y, 

here x stands for the midpoint labial position, κ , β are system

arameters, and γ is the temporal scaling of the problem. To gen-

rate sound with this labial dynamics, the pressure at the tracheal

nput p i is computed as: 

p i ( t ) = A x ( t ) + p back 

(
t − L 

c 

)

p back ( t ) = −r p i 

(
t − L 

c 

)

here A is a coefficient that depends on the airflow strength, L

s the tracheal length, c is the speed of sound and r , the reflec-

ion coefficient. Finally, the pressure at the output of the trachea

 p out = ( 1 − r ) p i ( t − L 
c ) ) forces a Helmholtz oscillator representing

he oroesopharingeal cavity (OEC), which behaves as a last filter for

he signal [12] . The equations ruling the filtering by the OEC are: 

d i 1 = i 2 , 

dt 
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Fig. 2. Images obtained from the spectrograms of six Rufous-collared sparrows, within the same time and frequency limits of Fig. 1 . The main difference between the 

spectrograms for different birds is the frequency modulation of the syllables in the theme. In order to generate these images, the spectrograms were computed with the 

same temporal and spectral ranges used in Fig. 1 . 
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d i 2 
dt 

= − i 1 
C L 1 

−
(

r d 
L 2 

+ 

r d 
L 1 

)
i 2 + 

(
1 

C L 1 
+ 

r 2 r d 
L 1 L 2 

)
i 3 + 

d p out / dt 
L 1 

+ 

r 2 r d 
L 1 L 2 

p out 

d i 3 
dt 

= −
(

L 1 
L 2 

)
i 2 − r d 

L 2 
i 3 + 

1 

L 2 
p out 

here following a deep rooted tradition in acoustic, the equa-

ions ruling the dynamics of a Helmholtz oscillator with

n opening are written as those of an equivalent circuit.

hese equations are derived in [12] , and the final sound

s proportional to the variable i 3 . Following previous work

12] the parameters used in the simulations are ( L 1 , L 2 , r 2 , r d , C) =
( 1 / 20 , 

1 / 10 4 , 0 . 5 10 7 , 24 , 0 0 0 , 5 / 355 x 10 8 ) . 

These simple dynamical models for birdsong production can

enerate synthetic sounds with spectrograms and timbre very sim-

lar to the actual songs, just by fitting the syllable ́s fundamental

requencies. In fact, neurons highly selective to a bird ́s own song

pike when the bird is exposed to synthetic copies generated by

hese models [6,13] . Six examples of spectrograms obtained by the

ntegration of this model are shown in Fig. 3 . Let us discuss how

o unveil the time dependent parameters needed in each case in

rder to be able to reproduce the original songs. 

In many species, the variety of acoustic modulations was found

o be the result of a set of basic physiological instructions called

gestures” [14] . In the case of the Rufous-collared Sparrow, we de-

ned a set of three frequency modulation patterns, namely ex-
onential downsweep, linear modulations and sinusoidal modu-

ations. The parameters for each modulation pattern are listed in

able 1 . 

To synthesize the song of a bird with the model, we identify

he modulation pattern for each syllable of the song, and compute

he parameters needed to reproduce them. Then, for each syllable

e generate a list of frequencies. The values of κ necessary for the

ystem ́s solutions to display solutions with fundamental frequen-

ies ω satisfy: 

κ = 6 . 5 10 −8 ω 

2 + 4 . 2 10 −5 ω + 2 . 610 −2 , a relationship that was

econstructed from a series of simulations on the model. In this

ay, the list of fundamental frequencies gets transformed into the

arameters the model needs to synthesize a realistic copy of the

ong. By using the model, the spectral content of the sound source,

roperly filtered by the tracheal tube and the OEC, are automati-

ally reproduced. 

The model is now integrated a large number of times, varying

he values of the parameters used to reproduce the basic gestures.

n this way, a large number of surrogate spectrograms are gener-

ted, all of them differing in random parameters that are consis-

ent with the biological variability that exists between different the

ongs produced by a unique individual. Training a deep neural net-

ork requires both a training set (used to adjust the parameters of

he network) and a validation set. The last one is used to check

hat the system does not merely associate the inputs with the la-

els, but that it is capable of generalizing and classifying new sets

s well. We generated, for each bird, 2500 sets of surrogate data to

rain the model, and 1500 to validate it. Notice that the system is
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Table 1 

Elementary frequency patterns in the song of collared-sparrows. 

Modulation pattern Frequency Parameters 

Sinusoidal w (t) = w f + ( w i − w f ) 
( t−t i ) 
( t f −t i ) 

w f , w i , t f , t i 

Exponential w (t) = w f + ( w i − w f ) e 
− 3( t−t i ) 

( t f −t i ) w f , w i , t f , t i 
Linear w (t) = w a v + A sin ( αi + ( α f − αi ) 

( t−t i ) 
( t f −t i ) 

) ω av , A , αf , αi , t f , t i 

Fig. 3. Synthetic songs generated by a dynamical system, where the parameters we selected so that they would be good copies of the recorded songs. Yet, the parameters 

used in these simulations, as it is the case for all surrogate data, were slightly varied from the parameters that would be required to obtain optimal copies. These images 

are, as in Fig. 2 , obtained from spectrograms of sounds within the same temporal window and frequency range shown in Fig. 1 . 
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entirely trained with surrogate data: it is not exposed to a single

real spectrogram computed from actual data. 

4. The network 

We fitted the parameters of a network that consists of a series

of alternating convolutional 2D layers (4), and MaxPooling layers

(4), with a final pair of densely connected layers. The convolutional

layers had sizes 8,16,16 and 32 respectively, obtained from the re-

spective inputs after convoluting with 3 × 3 windows. All the pool-

ing layers aggressively down-sample the features maps by a factor

of 2. The final two densely connected layers consist of 1024 and 6

units respectively. The last layer has as many units as categories in

the problem. That means, in our case, that we will try to train the

network to classify sounds as being sung by one of six recorded

birds. 

A common way to avoid over-fitting is by setting constraints on

the connection (weights) values so these take small values. In this

way, the network is more regular. This procedure is called regular-
zation, and it is implemented by adding a cost to the loss func-

ion of the network, whenever the weights take large values. In

ur network, the regularizing parameter was set as l2 = 0 . 001 . An-

ther technique for avoiding over-fitting is to randomly drop some

eights (setting their values to zero). Our dropout factor was set

s 0.5. Finally, the learning rate was set to 10 −4 . 

The images used to train the network used a gray scale, of

0 0 x 20 0 pixels. Batches of 10 units were used, and the training

ook place in 15 epochs, with 200 steps per epoch. The conversion

f these images into actual grids of pixels and ultimately floating

oint matrices was carried out using utilities of the Keras library.

n particular, the class ImageDataGenerator automatically takes im-

ges and turns them into batches of tensors. We normalized the

alues in each image to 255. 

. The results 

The evolution of the accuracy (the fraction of the images that

ere correctly classified) and loss (mismatch between a target
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Fig. 4. We show the training (points) and validation (lines) accuracy and loss, com- 

puted during the training of the network. 
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Table 2 

Confusion matrix, computed for one numerical ex- 

periment. 

Actual \ predicted 1 2 3 4 5 6 

1 1 0 0 0 0 0 

2 0 9 0 0 0 1 

3 0 0 8 0 0 1 

4 0 0 2 3 1 0 

5 0 0 1 0 8 0 

6 1 0 0 0 0 8 

Table 3 

Precision, recall and f1_score, computed from a nu- 

merical experiment. 

Class P R f1_score Support 

1 1.00 1.00 1.00 1 

2 1.00 1.00 1.00 10 

3 0.57 0.89 0.70 9 

4 1.00 0.5 0.67 6 

5 1.00 0.67 0.80 9 

6 0.9 1.00 0.95 9 

Avg./tot 0.89 0.84 0.84 44 
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andidate and the actual target) were computed in the different

pochs, and they are displayed in Fig. 4 . Notice that as fast as in

ix epochs, the validation accuracy is at 1.00, and the validation

oss is as low as 0.3. 

This network was trained, and validated, with a set of random

mages that corresponded to the spectrograms of synthetic sounds

enerated by a dynamical system. The sets did not include a sin-

le spectrogram from data. We then used this network to classify

 small set of songs that we recorded from six individual birds.

he number of songs that we could record from them varied in

umber. For the six birds we could record (1, 10, 9, 6, 9, 9) songs

espectively. Notice that unless one bands the birds, the only par-

imonious way to associate a set of songs with a bird is to ex-

ract them from a continuous recording, performed while the bird

s in sight. We computed the spectrogram of these recorded song

ith the same parameters used to compute the spectrograms of

he synthetic sounds, and used an Application Programming Inter-

ace (API) from Keras (img_to_array) to convert the images to a

umerical arrays. Then, we used those data as inputs on our net-

ork, and estimated the predicted class by inspecting the output

alues in the last layer of our network. We assigned the class as

he order of the unit presenting the largest value. 

To quantify the success of the procedure we compute the con-

usion matrix for one numerical experiment. This is a typical layout

hat allows quantifying the success of the classification procedure.

ach row represents an actual class, while the column represent

he predicted class. For one representative numerical experiment,

his reads as shown in Table 2 . 
From the confusion matrix, it is possible to compute a set

f numbers that summarizes the performance of the network in

he classification task. These are the recall, the precision and the

1_score. The precision for a class is defined as the ratio between

he true positives of the class, divided by the total number of times

hat the class was predicted. The recall of a class is defined as the

atio between the true positives of the class and the total number

f times that elements of that class were tested on the network.

n other words, the precision ( P ) indicates, given all the predicted

abels (for a given class), how many instances were correctly pre-

icted. The recall ( R ), on the other hand, indicates for all instances

hat should have a label X, how many of these were correctly la-

eled. The f1_score measures a balance between these two indices.

he indices computed from the confusion matrix in Table 2 are

hown in Table 3 . 

Notice that not all the birds were classified equally well. The

hort song of the third individual has the lowest precision. Two

imes a song of the fourth individual, and once a song of the fifth

ndividual were wrongfully mistaken by a song produced by the

hird individual. On the other hand, the fourth bird had the small-

st recall. Half of the times the network was exposed to a song

f this individual, it classified it wrongfully, probably due to par-

ial matches between segments of this long song with the shorter

ongs of other birds. Despite these outliers, the average f1_score

eaches a value of 0.84, a reasonable value, particularly since the

etwork was never exposed to the spectrograms of real songs dur-

ng its training. This numerical experiment led to a particular pre-

ise network. With the same training set, the fitting procedure

or the network was performed eight times, and the confusion

atrices were built for the classification of the six birds in our

tudy. The average values and standard deviations for the precision,

ecall and f1_score were P = 0 . 85 ± 0 . 02 , R = 0 . 81 ± 0 . 03 , f _ 1 =
 . 81 ± 0 . 03 . 

. Conclusions 

Deep learning is one of the most powerful techniques for clas-

ification tasks. Yet, the need of large data sets to fit the parame-

ers of convolutional-layered networks, poses a challenge when the

ata available for training is scarce. This is the case in our prob-

em, which consists of identifying individual birds by their songs.
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We addressed the issue by training the network with surrogate so-

lutions generated by a dynamical system. In this way, the network

was entirely trained on synthetic data. 

In general, the necessity of large data for training exists even for

problems where the data is not that scarce. This has led to a strat-

egy called augmentation, which consists of creating surrogate data

through a set of operations on the data. Since the whole program

of layered networks has been inspired by how the visual neural

system works, the default operations considered in augmentation

(and implemented in free distributed libraries as Keras) typically

consist of transformations that would be natural for generating the

different images of an object observed from different perspectives.

In this way, many of the operations usually considered in augmen-

tation might not be consistent with the actual variations meaning-

ful to a particular problem, unless it is visual in nature. In our case,

for example, a vertical shift in a spectrogram does not cover a re-

alistic fluctuation (birds do not shift, generically, the frequencies of

whole vocalizations upwards). Our dynamical system approach can

be programmed to generate realistic fluctuations in actual physio-

logical parameters of the problem. As a general observation, aug-

mentation needs to be adapted to the question and its context, a

problem that is capturing growing attention [15,16] . 

Dynamical systems, a most simplified description of how a

system behaves (aiming at capturing the utmost minimal ingre-

dients needed to understand the processes involved), and deep

learning (a procedure that ostentatiously gives up on unveiling

mechanisms) seem two irreconcilable extremes in the spectrum

of ways to address our understanding of nature. In this work,

both approaches have been used together to solve an identification

problem. A dynamical system that has been derived from the un-

derstanding of the phenomenon being described is capable of cap-

turing a large amount of coherent features of the problem. For ex-

ample, a model for labial oscillations operating at parameter val-

ues close to where a saddle node in a limit cycle occurs, will

generate solutions with a robust relationship between fundamen-

tal frequency and spectral content [17] . This implies that the ef-

fort of modeling the sound ́s fundamental frequency will automat-

ically pay in sounds with the right harmonic content. In this way,

spectrograms that are computed from sounds generated with this

model, with slight variations in their fundamental frequencies, will

present harmonics that need not be independently modeled. This

consistency allows reducing the size of training and validation sets.

Developing voiceprints for individual animals will allow ad-

dressing important ethological questions, as well as the develop-

ment of tools for monitoring ecological populations. It would not

be surprising in the near future to find the tools of deep learning

playing a key role in the development of new tools for neuroethol-

ogy and ecology. 
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