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We treat the problem of characterizing in a systematic way the qualitative features of two-
dimensional dynamical systems. To that end, we construct a representation of the topological
features of phase portraits by means of diagrams that discard their quantitative information.
All codimension 1 bifurcations are naturally embodied in the possible ways of transitioning
smoothly between diagrams. We introduce a representation of bifurcation curves in parameter
space that guides the proposition of bifurcation diagrams compatible with partial information
about the system.
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1. Introduction

By understanding the dynamics displayed by a non-
linear system we typically refer to the capacity
to list all the qualitatively different phase space
portraits that the system can display for different
values of its control parameters. Even when the
equations ruling the system are known, it is often a
very hard problem. Yet, there are algorithmic ways
to proceed. One computes some key invariant sets,
analyzes their stability, finds the normal forms that
allow mapping the problem onto a (hopefully) stud-
ied one close to a bifurcation . . . until consistent

bifurcation diagrams are sketched for all the param-
eters of interest [Wiggins, 2003; Guckenheimer &
Holmes, 1983]. Eventually, the educated intuition
of a dynamicist allows filling a gap, so that every
single change in the phase portrait, as the parame-
ters are changed, can be explained by either a local
or global bifurcation. The program becomes much
more difficult when the equations are not known,
for example, if one explores the problem experi-
mentally [Green et al., 1990; D’Angelo et al., 1992;
Valling et al., 2007; Ondarçuhu et al., 1993, 1994;
Mindlin et al., 1994; Berry et al., 1996]. In that
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case, one starts with some sets of attractors,
obtained for different parameter values, which
a priori are not “close” in any way. Actually, a sim-
ilar situation is faced when a system (whose equa-
tions are known) is explored numerically. Is it possi-
ble to algorithmically list and classify the dynamical
possibilities compatible with sparse information of
this sort?

In this work we explore this question for pla-
nar systems. These systems are near and dear to
the hearts of dynamicists, since two is the mini-
mal dimensionality in which we can embed nontriv-
ial, recurrent dynamics. Moreover, it is typical to
study the different behaviors that these bidimen-
sional models can display when two parameters are
varied, since this allows us to consider cases in which
the linear part of the vector fields are doubly degen-
erate. Yet, even these modest models can present
a significant puzzle for a natural scientist design-
ing the set of experiments (or numerical simula-
tions) necessary to unveil the structure of his/her
problem’s bifurcation diagram. The tools we present
here provide an algorithmic means for generating
and classifying all phase portraits compatible with
a given, limited information about a dynamical sys-
tem. This could be for instance the knowledge from
experiments or simulations about what the attrac-
tors of the system are.

The work is organized as follows. In Sec. 2,
we introduce a way of representing phase portraits
by using diagrams that capture important qualita-
tive information of the system’s dynamics. Specifi-
cally, they encode what the limit sets of the system
are, their stability and their distribution in phase
space.

Section 3 discusses how smooth modifications of
these diagrams give rise naturally to bifurcations, in
which phase portraits change qualitatively. All codi-
mension 1 bifurcations are obtained in this way. We
introduce a representation of bifurcation curves by
means of “dressed” lines, that encode the direction
in which new limit sets are created and their type
and stability. The possible ways of connecting dif-
ferent bifurcation curves in a higher codimension
bifurcation can be constrained by simple rules con-
cerning their dressings.

In Sec. 4, we show, as an instructive exam-
ple, how the theoretical framework developed here
can be applied to the Wilson–Cowan oscillator. We
present our conclusions in Sec. 5.

2. Diagrammatic Representation
of Phase Portraits

We now describe a representation of phase por-
traits by diagrams that discard all the quantitative
information that portraits convey (i.e. the specific
trajectories in phase space), while preserving the
qualitative features. Unlike the phase portrait,
the resulting diagram is robust under changes in the
system’s parameters as long as these do not reach a
bifurcation, in which the qualitative features of the
system change.

We will restrict ourselves to two-dimensional,
structurally stable dynamical systems. Further, we
will assume that the region of interest of phase space
can be enclosed by a closed transversal curve (i.e.
a closed curve along which the velocity vector is
neither tangent nor zero, so it always traverses the
curve from one of the sides to the other). This is, we
assume that the flow traverses the whole boundary
of the region of interest either inward or outward.
We note that the structural stability hypothesis is
usually generic except for systems that have some
kind of symmetry or conserved quantity, to which
this method does not apply in a straightforward
manner.

2.1. Construction of the diagrams

The diagrams encode information about the limit
sets of the system, which in two dimensions can only
be stable or unstable nodes (or foci, which are topo-
logically equivalent), stable or unstable limit cycles,
or saddle points. We will represent those with the
symbols of Table 1.

In Table 1 we have introduced two quantities
associated to limit sets: the index and the repulsion.
These can be computed easily from the diagrams:
the index is the number of arrows above its sym-
bol minus the arrows below, and the repulsion is
the number of outgoing arrows minus the incoming
ones. Their interpretation will be given in Sec. 2.4.

The shape of a symbol encodes the type of limit
set it represents, and the filling its repulsion. For
nodes and cycles, the repulsion is directly related
to their (in)stability.

Notice that there are various ways in which
the three arrows connecting the square saddle point
symbol can be oriented. It is forbidden to have
all the arrows departing from the square, or all
converging, but the other possibilities are allowed.

1730045-2



December 23, 2017 10:51 WSPC/S0218-1274 1730045

A Diagrammatic Representation of Phase Portraits and Bifurcation Diagrams

Table 1. Diagrammatic representation of the limit sets pos-
sible in two-dimensional dynamical systems.

Limit Set Representation Index Repulsion

Stable node 1 −1

Unstable node 1 1

Stable
cycle

0 −2

Unstable
cycle

0 2

−1 −1

Saddle

−1 1

2 Saddles Additive

...

n Saddles Additive

These represent different ways in which the saddle’s
invariant manifolds can be connected to other limit
sets, as explained later (Sec. 2.2), and determine its
repulsion: −1 for symbols with two incoming arrows
and one outgoing, and 1 for the converse.

If a system has several saddle points, we shall
represent them with a compound symbol as shown
in the last two entries of Table 1 (unless they are
separated by a limit cycle so that one is inside the
limit cycle and the other outside, in which case
we treat them individually). In those symbols, the
undirected lines should be replaced with incoming
or outgoing arrows, and one of the squares should be
crossed for each extra incoming arrow [see Fig. 1(c)
for an example]. As before, it is forbidden to have
all the n + 2 arrows outgoing or all incoming.

Every well-formed diagram consists of any
number of symbols in Table 1, connected by arrows
so that there is only one arrow unmatched, at the
top of the diagram. Each connecting arrow should
have a definite direction (upward or downward), so
two symbols can only be connected if the direc-
tions of their arrows match. For example, some well-
formed diagrams are shown in Fig. 1.

Suppose we know from experiments or simula-
tions what the stable limit sets of a two-dimensional
dynamic system are. Then it is possible to obtain
all the phase portraits compatible with these sta-
ble solutions by adding unstable sets (i.e. unstable
nodes, unstable cycles or saddle points) in a way
such that the resulting diagrams are well-formed.
Each diagram can then be interpreted as a specific
class of phase portraits.

2.2. Interpretation of the diagrams
as phase portraits

The interpretation of the diagrams is as follows:
each arrow in the diagram represents a family of
closed transversal curves in the phase plane, that
enclose all the limit sets in the branch of the dia-
gram below that arrow (see insets in Fig. 1). An
arrow pointing downwards means that the flow
enters the region delimited by the associated closed
transversal, and an arrow pointing upwards means

(a)

(b)

(c)

Fig. 1. Some examples of well-formed diagrams and their
interpretation as phase portraits. In the portraits, filled dots
represent stable nodes, empty dots unstable nodes, squares
saddle points, and closed curves limit cycles. Closed transver-
sals are shown in blue, with an arrowhead indicating the
inward or outward direction of the flow. Each closed transver-
sal is associated to an arrow in the diagram. Diagram (c)
admits multiple topologically different phase portraits, that
would be separated by heteroclinic bifurcations in parameter
space.
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that it exits it. Given a diagram, we draw a closed
curve in phase space for each arrow, keeping track of
its direction by adding an inward or outward arrow-
head to the curve. We draw each curve inside the
one associated to the arrow immediately above in
the diagram.

Notice that every symbol in Table 1 has one
arrow on top and a number of arrows at the bottom.
Accordingly, the transversal curves in phase space
will delimit regions with an outer boundary and a
number of holes inside. In each of these regions we
draw the limit sets associated with the correspond-
ing symbol in the diagram. Regions with a limit
cycle will have a single hole, and the limit cycle
should be drawn around it [see Fig. 1(b)].

To complete the phase portrait, trajectories
that cross all the transversals in the direction they
define should be sketched. Of these, the ones along
the saddles’ invariant manifolds are the most inter-
esting. Two begin in each saddle and two end, con-
stituting its unstable and stable manifold respec-
tively. Each pair approaches or leaves the saddle in
opposite directions, so the incoming and outgoing
trajectories alternate around it. For a single saddle
point, there is a unique qualitative (topologically
equivalent) way of connecting its manifolds to the
transversals bounding its region, that depends on its
repulsion as shown in Fig. 2. This follows since these
trajectories must each traverse one of the bound-
ing transversals in the direction it induces, without
intersecting the other trajectories. For several sad-
dle points, the ways of connecting their invariant
manifolds to the transversals are no longer unique.
However, all of them are equivalent up to topolog-
ical equivalence and heteroclinic bifurcations. An
example is shown in Fig. 1(c).

In the case of multiple saddle points, we do not
attempt to assign repulsions to them individually,
because it cannot always be done without ambiguity
(see Sec. 2.4). A repulsion can be assigned, however,

Fig. 2. Two different ways in which the invariant manifolds
of the saddle point can be connected to other closed transver-
sals. The remaining two can be obtained from these by invert-
ing the direction of all the arrows and trajectories.

to the whole set of saddles. By doing this, our treat-
ment abandons a complete description of the con-
nectivities of the invariant manifolds of the saddle
points, and thereby ignores heteroclinic bifurca-
tions. We favor this choice over complicating the
notation to account for the detailed connectivity of
multiple saddles, because in any case that informa-
tion is not usually accessible to experiments.

The only other topological ambiguity left when
reconstructing the phase portrait is the sense in
which the limit cycles circulate. If this is relevant
for a certain application, it can be easily incorpo-
rated to the method by using different symbols for
clockwise- or counterclockwise-circulating cycles.
For simplicity, we will ignore this distinction here.

Thus, a specific diagram represents a class
of phase portraits, all of which equivalent up to
topological equivalence and, if several saddles are
present, heteroclinic bifurcations. In the following
section we will show the converse statement: that
every phase portrait satisfying the hypotheses made
at the beginning of this section is represented by a
unique diagram.

2.3. Obtaining the diagram from
the phase portrait

Given a phase portrait, the diagram that represents
it can be constructed following algorithmic steps.
We need to identify the closed transversals on the
phase portrait and associate an arrow in the dia-
gram to each of them. The arrows then define the
limit set symbols according to Table 1.

For every stable or unstable node, a sufficiently
small transversal can always be found that encircles
it, we draw one of these with the appropriate orien-
tation for each node present (inward flow for stable,
outward for unstable). Similarly, for every stable or
unstable limit cycle a pair of closed transversals can
always be found sufficiently close to the cycle, one
on the inside and the other on the outside. Finally,
by hypothesis the entire region of interest can be
enclosed with a closed transversal, which we also
draw. All of these transversals can — and should —
be chosen so that they do not intersect. As a result,
the closed transversals will define regions with an
outer boundary and a number of holes. It could be
the case that a region has exactly one hole and the
two bounding transversals are oriented both inward
or both outward. Such regions cannot have any limit
set inside, we eliminate them by discarding either
of the two bounding transversals.

1730045-4



December 23, 2017 10:51 WSPC/S0218-1274 1730045

A Diagrammatic Representation of Phase Portraits and Bifurcation Diagrams

After this process, the phase space will be
divided by the transversals in regions enclosing a
single node, a single cycle or a nonzero number of
saddle points. That is, matching one of the entries
of Table 1. The full diagram can now be constructed
following the hierarchy induced by the distribution
of these regions. The symbol of a region lying inside
a hole of another should be located below the outer
region’s symbol, and connected with an arrow in the
direction induced by the orientation of the transver-
sal separating them.

Thus, we have an algorithmic way of identify-
ing any phase portrait with a specific diagram, and
any diagram with a specific class of phase portraits.
The diagrams may be used to consistently generate
and classify phase portraits in a highly qualitative
approach, and restrictions about the system’s limit
sets can be naturally applied to them.

2.4. Index and repulsion

We can now give an interpretation to the index and
repulsion introduced in Table 1. In planar dynam-
ical systems, the index of a closed curve is defined
as the amount of counterclockwise revolutions that
the vector field does as one travels counterclockwise
once around the curve. In particular, the index of a
closed transversal is always 1. To compute the index
of a limit set, we extend that definition in the fol-
lowing way: we first choose a region of phase space
that contains the limit set we are interested in and
no other, and that is bounded by closed curves. The
index of the limit set is the sum of the indexes of all
the bounding curves, with the following proviso: the
direction for moving around the bounding curves
should be with the region to the left, i.e. counter-
clockwise for “outer” boundaries but clockwise for
inner, “hole” boundaries, which gives the opposite
sign. For example, the simplest region containing a
limit cycle and no other limit sets has a ring shape
with an outer boundary and an inner hole, which
can be chosen transversal to the flow. The outer
boundary should be traveled counterclockwise, giv-
ing an index of 1, and the hole clockwise yield-
ing index −1. The index of limit cycles is thus 0.
Since the index of a curve is invariant under con-
tinuous deformations of it that do not traverse a
fixed point, the choice of a boundary transversal to
the flow is not necessary. In general, the index of
a region bounded by transversal curves is the num-
ber of outer boundaries minus the number of holes,

which justifies the prescription of obtaining it from
the diagram by subtracting the number of arrows
below the symbol to the arrows above.

We define the repulsion only for regions
bounded by closed transversals, and it is directly
the number of transversals through which the flow
leaves the region minus the number through which
it enters it. The repulsion of a limit set is the
repulsion of a region bounded by closed transver-
sals that contains it and no other limit sets, where
we are using “limit set” to actually refer to any
of the entries of Table 1. The subtlety is that if
a system has multiple saddle points, a repulsion
cannot always be assigned unambiguously to indi-
vidual saddle points. For instance, in the lower inset
of Fig. 1(c), we could enclose both stable nodes and
either of the two saddles with a new closed transver-
sal, which naively would give that saddle a repulsion
of +1, and −1 to the other, depending on our arbi-
trary choice of the transversal. The pair of saddles
taken as a whole, however, has repulsion 0 (in this
example) regardless of that choice. We can then sim-
ply treat both saddles as a single “limit set” with
repulsion 0 and index −2, motivating the conven-
tion for the symbols of Table 1.

Both quantities are additive: the index of the
union of two disjoint regions is the sum of their
indexes, and similarly for the repulsion. The inter-
esting case is when two symbols adjacent in the
diagram are considered together: then the arrow
that connects them is not counted when comput-
ing these quantities. However, the arrow must have
been above one of the symbols and below the other,
so the contribution to the index of one of the limit
sets cancels the contribution to the other, yield-
ing the same total index. Similarly, the connecting
arrow is necessarily outgoing for one of the symbols
and incoming for the other, so it does not contribute
to the total repulsion either.

An important observation is that for the class
of dynamical systems we are considering, i.e. whose
relevant phase diagram can be bounded by a single
closed transversal, the total index is 1 and the total
repulsion is −1 if the flow enters the transversal, or 1
if it exits it. These quantities can also be obtained
directly from the limit sets of the system, which
has important consequences. First, from Table 1
we see that the total index is the number of nodes
minus the number of saddles, so we conclude that
the nodes must always exceed the saddles by one.
In particular, these systems have an odd number
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of fixed points, which can be used as a criterion
to assess whether all of them have been found in
a search. Second, the sum of the repulsions of the
limit sets is also given. In particular, the repulsion of
a saddle point might be assigned a priori given the
rest of the limit sets, which can be used to constrain
the ways in which its invariant manifolds are dis-
tributed in phase space (Fig. 2). These constraints
are naturally encoded by the diagrams, since well
formed diagrams have only one external arrow on
top, yielding a total index of 1 and a total repulsion
given by its orientation. All the other arrows are
connected at both ends, giving no contribution.

3. Bifurcations

3.1. Continuous transitions
between diagrams

Varying the system’s parameters continuously may
change its behavior qualitatively, a process known
as bifurcation. Then, in crossing a bifurcation the
diagram describing the system should change, and
do so somehow “continuously”. Interestingly, the
diagram formalism allows a natural interpretation
of all bifurcations as the continuous ways to change
a diagram into another.

By changing a diagram continuously we mean
either shrinking the length of a connecting arrow
until it disappears, or alternatively creating a new
zero-length arrow and enlarging it. Since the arrows
imply the limit set symbols according to Table 1,
these must be updated as the arrow configuration
changes.

Recall that each arrow represents a family of
closed transversals that separate the limit sets asso-
ciated to the symbols in its ends. An arrow length
approaching zero is interpreted as the two involved
limit sets approaching each other in phase space,
so that a transversal curve should be finely tuned
to separate them. In the bifurcation, the limit sets
collide and no separating curves can be found any
more.

Depending on the type of limit sets that are
connected to the arrow involved, different kinds of
bifurcation can occur. Table 2 shows all the possi-
ble connections between symbols that can be made
using the entries of Table 1, and the transition to a
different diagram that takes place when the involved
arrow shrinks to zero-length. Each of these transi-
tions has an interpretation as a bifurcation. The
(partial) diagrams of Table 2 display only the limit

Table 2. All possible continuous transitions between dif-
ferent diagrams, each involves an arrow whose length
approaches zero and represents a codimension 1 bifurcation.
Conversely, all codimension 1 bifurcations in two-dimen-
sional systems that change the limit sets can be expressed
as a continuous transition between diagrams.

Bifurcation Transition Between Diagrams

Saddle-node

Hopf

Saddle-node on
invariant cycle

Homoclinic

Saddle-node of
limit cycles

sets involved in the bifurcation. They must be com-
pleted with other limit sets, which would not par-
ticipate in the bifurcation, in order to represent a
full phase portrait. For instance, at the bottom of
the first diagram there is a downward arrow left
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unmatched, that could be completed by adding a
stable node on both sides of the transition.

Notice that the amount and orientation of all
the arrows external to each partial diagram remain
unchanged in the bifurcations. This yields conserva-
tion laws for the index and repulsion of the system,
which must be constant for all parameter values
as long as the hypotheses made at the beginning
of Sec. 2 still hold. Some remarkable consequences
follow from this: we can predict a priori from the
diagram whether a collision between a saddle and
a node would lead to a regular saddle-node bifur-
cation (if they have opposite repulsions) or to a
saddle-node on invariant cycle (if they have the
same repulsion). Similarly, from the repulsion of a
saddle point we can predict the stability of a limit
cycle born from it at a homoclinic bifurcation (and,
conversely, whether a limit cycle of given stability
can annihilate against it). Moreover, the specific dis-
tribution of arrows around the saddle point symbol
determines the topologically allowed ways in which
the cycle can be created, in particular, whether “big
homoclinic loops” can occur or not.

3.2. A representation of
bifurcations in parameter space

We will now introduce a representation of codimen-
sion 1 bifurcations in parameter space, that explicits
which limit sets are created or destroyed in cross-
ing the bifurcation. This helps proposing plausible
bifurcation diagrams from partial knowledge of the
behavior of the system, in a way analogous to the
diagrams introduced in Sec. 2, that allowed to sys-
tematically construct plausible phase portraits. We
will focus on two-dimensional parameter spaces, in
which codimension 1 bifurcations are curves.

We can keep track of the creation and annihi-
lation of limit sets at a bifurcation by “dressing”
its curve with symbols at its sides. Table 3 shows
our convention, in which triangles represent nodes,
loops represent cycles and squares represent sad-
dle points, and the filling indicates their repulsion.
For example, a filled triangle on the right side of a
curve would indicate that a stable node is created
when crossing the bifurcation from left to right, or
destroyed if crossed from right to left. The sym-
bols associated to each curve can be obtained from
Table 2 by identifying the limit sets that intervene
in the bifurcation. They add to the same index and
repulsion at each side of the curve, so that these

Table 3. Representation of codimension 1 bifurcations in a
two-dimensional parameter space. The bifurcations are rep-
resented by dressed curves, the dressing symbols indicate
what limit sets are created or destroyed in the bifurcation.

Bifurcation Representation in Parameter Space

Saddle-node

Hopf

Saddle-node on
invariant cycle

Homoclinic

Saddle-node of
limit cycles

conserved quantities do not change when the sys-
tem undergoes the bifurcation.

This notation is well suited for representing
codimension 2 bifurcations as junctions of several
codimension 1 curves. The possible codimension 2
bifurcations are shown in Fig. 3 and can occur
generically in two-dimensional parameter spaces
[Kuznetsov, 2004].

A simple, yet powerful constraint we can apply
to the set of bifurcation curves of a system is that
whenever several such curves meet at one point in
parameter space, all their dressings must match.
Every symbol that comes “in” through one of the
curves must go “out” through another, and on the
same side of the bifurcation line. Otherwise, a closed
path in parameter space that went around the junc-
tion of the curves would result in a net creation or
destruction of limit sets at each revolution, and the
amount and type of limit sets of the system would
not be uniquely specified by the parameters.

4. Examples

In this section, we illustrate how the tools we intro-
duced can be used to help guide a reconstruction of
bifurcation diagrams and phase portraits.

As an example suppose that, from simulations
or experiments, a system is known to have a low-
dimensional behavior and that, at three different
sets of parameters 1, 2 and 3, it has been observed to
be respectively stationary, or to oscillate, or to have
a coexistence of these two attractors. Moreover,
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Representation of codimension 2 bifurcations in a two-parameter space (µ1, µ2), at the meeting of codimension 1
bifurcation curves. These correspond to (a) cusp, (b) Bogdanov–Takens, (c) saddle-node separatrix loop, (d) generalized Hopf,
(e) neutral saddle separatrix loop, (f) cusp of saddle-nodes of limit cycles. In each of the regions, the limit sets that undergo
bifurcations have been sketched by means of diagrams. In (a), one of the nodes on the inner region has been lined through,
to help distinguish them and emphasize that the saddle-node curves that meet in the cusp involve different nodes; idem for
the limit cycles in (f). In each case, reversing the sign of all the arrows (i.e. inverting all the repulsions) also gives a possible
scenario.

large perturbations of the system tend to die away
so that the long term dynamics occurs in a bounded
region of phase space. The aim is to suggest plausi-
ble bifurcation diagrams in a two-parameter space,
and describe the qualitatively different phase por-
traits that the system would present.

The first step is to make complete phase por-
traits compatible with these sets of attractors. For
the first set of parameters, it should have a stable
node, for the second, a stable limit cycle, and for
the third both, so the diagrams must contain these
symbols and eventually other unstable limit sets.
Since large perturbations decay, the phase space
can be bounded by a closed transversal with repul-
sion −1, and the diagrams should have a downward
arrow on top. A single stable node is already a well-
formed diagram (since it has exactly one uncon-
nected arrow, at the top) and is the simplest choice

for the first case. For the second, at least an unstable
node must be added below the limit cycle symbol.
For the third case, two relatively simple yet different
diagrams can be proposed: by adding an unstable
cycle, or a saddle point and an unstable node, as
shown in Fig. 4. More complex diagrams could be
proposed for each case by adding more unstable
limit sets. Note, however, that the only way to add
only unstable limit sets to a given diagram keeping
its index and repulsion constant is by adding pairs
of repulsion −1 saddle points and unstable nodes.

Let us study the first scenario and suppose that
the system has an unstable cycle at the third set
of parameters (diagram 3a in Fig. 4). There will
be regions of parameter space, thus, in which dia-
grams 1, 2 or 3a apply. This case is simple enough
that every diagram can be reached from any of
the other two by crossing a single codimension 1
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Fig. 4. Simplest diagrams featuring (1) a single stable node,
(2) a single stable limit cycle, (3) a stable node and a stable
limit cycle. Two scenarios are shown in the third case, that
lead to different bifurcation diagrams.

bifurcation, i.e. shrinking a connecting arrow to
zero-length. Diagrams 1 and 2 could be bridged with
a supercritical Hopf bifurcation, 2 and 3a with a
subcritical Hopf, and 3a and 1 with a saddle-node
of limit cycles.

One possibility, then, would be that every
region is connected to the other two in parameter
space, separated by those codimension 1 bifurca-
tions. Indeed, the three bifurcation curves can meet
in a generalized Hopf codimension 2 bifurcation,
and the bifurcation diagram would look like the one
seen in Fig. 3(d). Or one of the three regions could
lie between the other two, then only two codimen-
sion 1 curves would be present with no codimen-
sion 2 bifurcations.

From the bifurcation diagram it is possible to
predict distinct features of the dynamics of the sys-
tem. From the diagram in Fig. 3(d), for instance,
the period of the limit cycle is expected to be
finite everywhere in parameter space, and its ampli-
tude should become arbitrarily small near the Hopf
bifurcation. There, a smooth transition should take
place between the oscillating and the stationary
states. These predictions can be checked against the
observed behavior of the system and used to rule
out some of the suggested scenarios.

Let us consider the second possibility, in which
the third set of parameters corresponds to a dia-
gram like 3b in Fig. 4. Now, diagrams 1 and 2 can
be connected through a supercritical Hopf as before
and 2 and 3b through a saddle-node, but in going
from diagram 1 to 3b a stable cycle, an unstable
node and a repulsion 1 saddle should be created,
which none of the codimension 1 bifurcations in
Table 3 can do. Thus, these regions must be sepa-
rated by at least two bifurcation curves. An efficient
method to find the possible sequences of bifur-
cations that link two phase portraits in the gen-
eral case is outlined in the Appendix. The generic
bifurcation diagram that one obtains for this sce-
nario is shown in Fig. 9. This bifurcation diagram

already allows the system to present rich behaviors
when the parameters are forced, and it is ubiquitous
in numerous dynamical systems: classic examples
include the van der Pol [Guckenheimer & Holmes,
1983] and the Wilson–Cowan oscillators [Wilson &
Cowan, 1972].

For example, the Wilson–Cowan oscillator
describes the mean activities of two coupled pop-
ulations of neurons, one excitatory and the other
inhibitory. A simplified version is given by [Hop-
pensteadt & Izhikevich, 1997]:

ẋ = −x + S(ρx + ax − by)

ẏ = −y + S(ρy + cx − dy),
(1)

where x, y are the mean activities of the excitatory
and inhibitory populations respectively, a, b, c, d are
the couplings between both populations and ρx, ρy

are the external inputs. S is a sigmoidal function,
e.g. S(ξ) = (1 + e−ξ)−1. For instance, if we set
a = 15, b = 15, c = 12, d = 5, the resulting
bifurcation diagram for the parameters ρx, ρy ∈
(−13,−1) has all possible bifurcations of planar sys-
tems, as sketched in Fig. 5. This system can have
two qualitatively different stationary states, with
both populations active or both inactive. The node
symbol corresponding to the latter has been lined
through in the diagrams of Fig. 5 to help distinguish
them.

Fig. 5. Qualitative bifurcation diagram of the Wilson–
Cowan model. The arrows in the diagrams have been omitted
for compactness.
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5. Conclusions

In this work we have treated the problem of con-
structing phase portraits and bifurcation diagrams
of two-dimensional nonlinear systems with a dia-
grammatic approach.

We introduced a class of diagrams to repre-
sent the qualitative features of phase portraits of
structurally stable, globally attracting (or repelling)
two-dimensional dynamical systems. The diagrams
emphasize the robust, topological characteristics of
the limit sets of the system, and explicitly dis-
card its quantitative, parameter dependent features.
There is a one-to-one correspondence between well-
formed diagrams and sets of equivalent (up to topo-
logical equivalence and heteroclinic bifurcations)
phase portraits. Any phase portrait can be obtained
from the diagram and vice versa by following simple
algorithmic steps.

Smooth transitions between diagrams give rise
naturally to all codimension 1 bifurcations of pla-
nar systems (with the exception of heteroclinic con-
nections, which are ignored in our description). We
introduced the notion of repulsion of a limit set, an
additive quantity that is conserved in all bifurca-
tions, and can be easily computed from a diagram
by counting incoming and outgoing arrows. Simi-
larly, the index is also additive, conserved, and can
be computed by counting arrows above and below
the symbols in a diagram. The global values that
these quantities take (1 for the index, ±1 for the
repulsion) a priori constrain the possible combina-
tions of limit sets that a system can have. These
constraints are embedded naturally in the rules for
forming diagrams.

We also developed the representation of codi-
mension 1 bifurcations in a two-dimensional param-
eter space, by adding dressing symbols to the
curves. Apart from describing the type of bifurca-
tion, the dressing makes explicit the orientation of
a bifurcation curve, i.e. to which side of the curve
are the involved limit sets destroyed or created. The
dressings are particularly useful for studying codi-
mension 2 bifurcations, which can only occur at a
meeting of codimension 1 curves if their dressings
match properly.
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Mindlin, G. B., Ondarçuhu, T., Mancini, H. L., Pérez
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Appendix A

Generating Sequences of
Bifurcations

We propose to find sequences of bifurcations that
lead from a given phase portrait to another, in a way
that is similar to finding contributions to the tran-
sition amplitude of a scattering process in Quan-
tum Field Theory (QFT). Our elements will be the
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limit sets (the “particles” in QFT), the codimen-
sion 1 bifurcations will be the “interaction vertices”
and the sequences of bifurcations the “Feynman dia-
grams” [Feynman, 1949]. For this reason we will
refer to our diagrammatic representation of bifur-
cation sequences as “Feynman-like diagrams” (FL).
As with Feynman diagrams in QFT, our represen-
tation does not pretend to advance our knowledge
of bifurcation theory, but to provide algorithmic
tools for keeping track of the possible bifurcation
sequences compatible with finite information about
the behavior of the system.

The idea is as follows. We can represent the
limit sets of planar systems with different types of
directed lines, as shown in Table 4. The direction of
the arrow indicates the sign of the repulsion, posi-
tive by a left arrow and negative by a right arrow.

The limits sets can meet in codimension 1 bifur-
cations, that are represented by vertices, i.e. partic-
ular junctions of lines. These are shown in Table 5.
There, the horizontal axis represents the bifurca-
tion parameter µ, and the vertical axis the spatial
distribution of the limit sets. The interpretation is
straightforward: the set of lines is different on both
sides of the vertex, which reflects the change in the
limit sets of the system at the bifurcation. Note
that given an allowed vertex, one can obtain three
more by reversing the sign of time (i.e. changing the
repulsions, or the direction of the arrows), reversing
the sign of the bifurcation parameter (interchanging
left and right in the vertex), or doing both opera-
tions simultaneously. For example, the four possi-
ble Hopf bifurcations (supercritical or subcritical,
each of which can be crossed in either direction) are

Table 4. Representation by directed lines
of the limit sets possible in two-dimensional
dynamical systems.

Limit Set Directed Line

Stable node

Unstable node

Stable cycle

Unstable cycle

Repulsion −1 saddle

Repulsion +1 saddle

Table 5. The “vertices” of two-dimensional dynamics.
Each represents a codimension 1 bifurcation. The allowed
variants are illustrated in Fig. 6.

Bifurcation Vertex

Saddle-node

Hopf

Saddle-node on invariant cycle

Homoclinic

Saddle-node of limit cycles

explicitly shown in Fig. 6. Accepting that these are
allowed operations, we can condense all four vari-
ants in a single vertex, as in Table 5. Note that,
unlike Feynman diagrams, single particle lines can-
not be moved from one side of the vertex to the
other. In the example of Fig. 6, an incoming limit
cycle could not yield two outgoing nodes due to the
conservation of index. Similar considerations apply
to the other bifurcations.

A sequence of bifurcations with parameter µ is
represented by a FL diagram containing several ver-
tices. The lines present at each value of µ give the
succession of limit sets at each stage. The possible
sequences of bifurcations between two phase por-
traits are given by all FL diagrams whose external
lines correspond to the initial and final portraits.
Provided that these have the same total repul-
sion, there will be an infinite number of possible
sequences that link them. As in QFT, it is reason-
able to classify them by the number of bifurcations

(a) (b) (c) (d)

Fig. 6. Given a vertex like (a), three more can be obtained
by replacing t �→ −t (b), µ �→ −µ (c), or both (d).
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(vertices) they involve. The motivation for that is
that sequences with few bifurcations offer the most
parsimonious scenarios and are more limited in
number. In perturbative QFT, diagrams with fewer
vertices correspond to lower orders in perturbation
theory and usually contribute more to the scatter-
ing amplitude.

We will illustrate the procedure with the tran-
sition between regions 1 and 3b in the example con-
sidered in Fig. 4. The first step is to identify the ini-
tial and final limit sets, which will be the external
lines of the FL diagrams. In a diagram representing
a transition from region 3 to 1, these would look
as shown in Fig. 7. The rationale we take for the
vertical ordering of multiple lines is the same we
used for the diagrams introduced in Sec. 2.1. As we
have seen, in these diagrams saddle points emanate
“branches” downwards. To keep track of their con-
nectivities, we can label them with dummy symbols
α, β, . . . and use the labels as reference marks, as on
the left side of Fig. 7. There, branches α and β stem
from the saddle point, branch α has a limit cycle on
top and branch β only has a node. With this order-
ing convention, bifurcations can only occur between
neighboring lines, including those linked by the ref-
erence marks. The case of multiple saddle points is
incorporated by allowing adjacent saddle-point lines
to interchange their positions and/or repulsions.

The next step is to find, in an orderly manner,
well-formed FL diagrams featuring these external
lines. As argued above, it is reasonable to look at
the diagrams with smaller number of vertices first.
In this particular case, the initial and final lines can-
not be linked by a single bifurcation, a minimum of
two must be used. There are three different possi-
ble diagrams with two vertices, that are shown in
Fig. 8.

Note that in case (a) in Fig. 8, the saddle-node
and Hopf bifurcations involve different limit sets, so

Fig. 7. A path in parameter space between two qualitatively
different regions defines a series of bifurcations, represented
by a FL diagram. Here the blob represents any diagram fea-
turing the depicted external lines. The incoming lines encode
the limit cycles of the initial region, and the outgoing lines,
of the final region.

Fig. 8. (Left) The three possible FL diagrams linking
regions 3 and 1 with the minimal number of vertices (two).
(Right) Sketch of how the bifurcation curves associated with
these diagrams would look in a two-parameter space. They
define regions, numbered 1–5, in which the phase portraits
are given by the diagrams drawn in blue. The node in branch
β has been lined through to help distinguish it from the other.

they may occur in either order. Thus, in the gen-
eral case these bifurcation curves could intersect in
parameter space, as shown in the right panel. Dia-
gram (a) can be interpreted as a path in parameter
space that goes from region 3 to region 1 crossing
these bifurcation curves. If the saddle-node occurs
first, it would traverse an intermediate region with
an unstable node surrounded by a stable cycle,
which we can recognize as the region 2 introduced in
Fig. 4. If the Hopf occurs first, a new region appears,
labeled 4. There, two stable fixed points coexist,
which is a testable prediction of this bifurcation
diagram. A typical example of a system exhibiting
such coexistence is an “on-off” switch. Note that
the intersection of these two curves represents two
independent codimension 1 bifurcations rather than
a bifurcation of intrinsic codimension 2.

On the contrary, in (b) both bifurcations
involve the same node, and the Hopf bifurcation
must occur before the saddle-node. The path in
parameter space would traverse region 4 again but,
unlike case (a), the node that survives is now
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the one on branch β. Since these nodes repre-
sent different states of the system (e.g. “on” or
“off”), we label the final region 1′ to distinguish
it from the former. Notice, however, that this is
a merely quantitative difference and that it could
be possible to transform one state into the other
continuously.

Similarly, in (c) both bifurcations involve the
same saddle point and the homoclinic must occur
first. The final region is again 1′ since the surviving
node is the one from branch β.

The final step is to combine the information
from the three diagrams of Fig. 8 in a single bifur-
cation diagram. We see that region 3 should be
adjacent to regions 2, 4 and 5. In turn, regions 2
and 4 limit with 1, and regions 4 and 5 with 1′. The
resulting bifurcation diagram is shown in Fig. 9,
where we have obtained the junctions of curves
(emphasized by gray circles) from the codimension
2 bifurcations of Fig. 3. Note that the dressings of
the colliding bifurcation curves matched properly in
every case. If the homoclinic born at the Bogdanov–
Takens bifurcation reaches the saddle-node curve
separating regions 2 and 3, it must collide with it at
a saddle-node separatrix loop bifurcation. It cannot
cross it, since on the other side lies region 2, that has
no saddle point to undergo an homoclinic bifurca-
tion. And indeed, regions 2 and 5 can be connected
by the resulting saddle node in invariant cycle bifur-
cation. The three paths a, b and c correspond to
the three sequences of bifurcations encountered in

Fig. 9. Bifurcation diagram for the second scenario in Fig. 4,
describing the possible transitions between regions 1 and 3
that involve series of two codimension 1 bifurcations. It fea-
tures a cusp, Bogdanov–Takens and saddle-node separatrix
loop codimension 2 bifurcations (emphasized with circles).
The labeling of the regions 1–5 and paths a–c is consistent
with Fig. 8.

Fig. 8. This bifurcation diagram describes general
transitions between regions 1 and 3 with up to two
codimension 1 bifurcations, in the sense that any
other such bifurcation diagram will typically be pos-
sible to map to a part of this one. We note that
not all bifurcations shown here must necessarily be
accessible to a specific system (for example, the two
saddle-node curves need not meet in the cusp, they
could extend further). More complex sequences of
bifurcations can be taken into account in a similar
manner by drawing FL diagrams with increasing
number of vertices.
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