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Abstract 

Reconstructing the flow of a dynamical system from experimental data has been a key 

tool in the study of nonlinear problems. It allows to discover the equations ruling the 

dynamics of a system, as well as to quantify its complexity. In this work we study the 

topology of the flow reconstructed by autoencoders, a dimensionality reduction method 

based on deep neural networks that has recently proved to be a very powerful tool for this 

task. We show that, although in many cases proper embeddings can be obtained with this 

method, it is not always the case that the topological structure of the flow is preserved. 

 

 

Lead Paragraph 

 

One of the main objectives in science and engineering is to propose interpretable 

mathematical models capable of explaining sequences of experimental observations. 

These models are usually expressed as a set of differential equations. The explosive 

increase of computing power and data availability in recent years has boosted the 

development of machine learning algorithms capable of find these equations directly from 

the data (1-7). This is especially relevant when we do not know the elemental mechanisms 

that govern the evolution of the system, or when the nature of the observations does not 

allow a direct analytical approach. Recent work shows that this data-driven methodology 

for discovering governing equations can greatly benefit from deep neural networks (8-

11). These powerful models can be used to transform the experimental data into a new 

set of coordinates in which the dynamics can be easily expressed. This process is known 

as embedding.  

In this paper we study reconstructed flows using autoencoders, a neural network 

architecture widely used for dimensionality reduction in machine learning. For most 

cases, this model is capable of learning proper embeddings of chaotic data. But, 

remarkably, there are cases where this model does not learn a topologically correct 

representation of the data, even when its reconstruction error is low. Autoencoders have 

the potential to drastically improve equation discovery methods, but a warning should be 
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 2 

raised since it is not possible to find a correct model if topological invariants computed 

from the data are not preserved. 

 

Introduction 

 

In all areas of physics, we need to build and validate models involving more variables 

that those available for measurement. Some forty years ago, Floris Takens (12) presented 

a theorem which described the conditions under which a flow can be reconstructed from 

a temporal sequence of observations of a system’s state. Moreover, he presented two ways 

to create a multi-valued sequence of points which could be mapped into the original flow 

by means of a smooth and invertible change of coordinates. That reconstruction was used 

to compute the system’s effective dimension, to reconstruct the equations driving its 

dynamics, and it was even successful in preserving, for a chaotic flow, the topological 

organization of the unstable orbits coexisting with the attractor (13).  This is particularly 

useful, since a model proposed to explain an experiment can be discarded if it is uncapable 

of reproducing the flow’s topology (14).  

Due to the increase of data availability and computing power, data-driven algorithms for 

discovering interpretable dynamical models have become highly relevant in the last 

decade. Model discovery algorithms can be very useful in systems where the governing 

equations are unknown, or only partially known, but rich time series data is available. 

This is the case for many problems in biological and social sciences, or many control and 

stabilization tasks in fluid dynamics (15,16). Many research efforts have been developed 

to investigate effective algorithms capable of finding parsimonious, nonlinear governing 

equations from temporal data series (1-7). Before applying these algorithms, an 

embedding procedure is usually necessary to transform the high-dimensional input data 

to the low-dimensional coordinate space of the equation system. The standard procedure 

is to use some kind of mode decomposition procedure (3,17,18).  

Recently, the use of deep autoencoders for discovering nonlinear coordinate 

transformation has proved to be a very successful approach to make the embbeding (8-

11).  Such novel scheme takes advantage of the well-known power of neural networks to 

efficiently discover complex patterns in large amounts of data (19,20). This method has 

the potential to provide qualitative improvements in our understanding of a variety of 

complex systems, whose equations are difficult to derive from first principles. Yet, a key 

question in this program is whether these reconstructed variables will reflect the 

topological structure of the original flow, as the reconstructions proposed by Takens do. 

Let us assume we are interested in unveiling the structure of a flow, whose measurement 

gives rise to a time series data {𝑥1,𝑥2,, … , 𝑥𝑁}. The underlying hypothesis is that 𝑁1 ≪ 𝑁  

elements of the time series {𝑥𝑘,𝑥𝑘+1,, … , 𝑥𝑁1+𝑘−1}  contain enough information to define 

its future, i.e., the next segment {𝑥𝑘+1,𝑥𝑘+2,, … , 𝑥𝑁1+𝑘}. Determinism will require that 

there is a unique value 𝑥𝑁1+𝑘 for any existing segment. In this way, we can represent the 
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points {𝑥𝑖} in the time series by points in 𝑅𝑁1. Hence, the time series will be restricted to 

a submanifold of 𝑅𝑁1: an embedded manifold. This embedding is neither optimal nor 

unique. In fact, Taken’s theorem provides a subsampling that guarantees global metric 

embedding between original and reconstructed state spaces, and it follows from it that if 

the manifold holding the flow is of dimension 𝑑, under general conditions a subsampled 

set of 2𝑑 + 1 points of the 𝑁1 segments suffices to generate an embedding. This is how 

dynamics typically deals with the reconstruction of flows from data. 

 

The autoencoder embedding method reconstructs the flow from the activity of the 

artificial neurons in the middle layer of a deep autoencoder, known as latent space. The 

term autoencoder refers to a feedforward neural network that learns to copy its input to 

its output (20-23). Usually, it consists of a set of layers of nonlinear units, where the 

number of units in each layer is: 

𝑁1,   𝑁2,    … 𝑁𝑘,   … 𝑁2,   𝑁1      𝑤𝑖𝑡ℎ     𝑁1 > 𝑁2 > ⋯ > 𝑁𝑘 .  

 

When the number of hidden layers is greater than one, these neural networks are usually 

referred to as stacked or deep autoencoders. What makes the network interesting is that 

𝑁𝑘 is chosen as small as possible, i.e., as the minimum number of units that prevents the 

loss of information by the network, leading to a compression of the information of the 

original data. We can train the network with subsets of the time series,  

 

{𝑥1,𝑥2,, … , 𝑥𝑁1
}, {𝑥2 ,𝑥3,, … , 𝑥𝑁1+1}, … {𝑥𝑁−𝑁1 ,𝑥𝑁−𝑁1+1, … , 𝑥𝑁}. 

 

If 𝑁1 is large enough so that determinism is guaranteed, the next question is how small 

can 𝑁𝑘 be, so that the compression does not affect the network’s capacity to recover the 

input information in the last layer. Once that value for 𝑁𝑘 is obtained, the middle layer, 

with 𝑁𝑘 units, can be used to define a compressed multi-valued environment for each 

input element: 

 

(𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑁1

𝑖 ) → 𝒀𝒊 = (𝑦1
𝑖 , 𝑦2

𝑖 , … , 𝑦𝑁𝑘

𝑖 ),       𝑖 = 1, … , 𝑁 − 𝑁1. 

 

The question that we address now is whether this multi-valued, compressed set of vectors 

constitutes an embedding of the scalar time series. Specifically, if the scalar values of the 

time series corresponding to flow measurements, processed by an autoencoder, give rise 

to a multi-valued environment preserving the topology of the flow. Notice that the input 

needs not to be a scalar time series. It could be a tensor, where at each time step a frame 

is coded. In this way, an embedding of the dynamics of phenomena recorded in a movie 

could be automatically reconstructed, without the need of computing empirical modes, 

and projecting the spatio-temporal data onto them.  

 

In order to address this question, we will study strange attractors: non-trivial invariant 

sets whose topology can be very precisely quantified through the study of the unstable 

periodic orbits coexisting with it (24). Strange attractors can be classified by the 
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topological organization of those periodic orbits. For attractors in three dimensions, this 

organization can be characterized by how the orbits are knotted, and how they link around 

each other (13,14). The later topological feature can be described by an index called the 

linking number. Given two orbits in a three-dimensional space, this index can be 

computed algorithmically from the crossings observed in a two-dimensional projection 

of the orbits (14). At each crossing point, tangent vectors are drawn to the upper and lower 

curve segments in the direction of the flow. The crossing is labelled + (-) if the tangent 

vectors form a right- (left-) handed coordinate system in the projection plane (see Figure 

1). The linking number of these two orbits is the integer resulting from the sum over all 

crossings, where each crossing contributes + 1
2⁄   or − 1

2⁄ , depending on its sign. 

 

Remarkably, flows reconstructed through time delay embeddings as proposed by Takens 

preserve the topological structure of time series segments which are good approximations 

of the unstable periodic orbits (13,14). Analogously, we used the variables in the latent 

space of an autoencoder to construct a flow and test whether this methodology also 

preserves the topological organization of the unstable periodic orbits. 

 

Methods 

 

To generate our dataset, we integrate a Rössler system of equations,  

 

𝑑𝑥

𝑑𝑡
= −𝑦 − 𝑧 

𝑑𝑦

𝑑𝑡
= 𝑥 + a𝑦 

𝑑𝑧

𝑑𝑡
= b + 𝑧(𝑥 − c) 

 

with 𝑎 = b = 0.1 and 𝑐 = 14, generating a time series data of 15000 scalar values 

corresponding to consecutive values of 𝑥 (see Figure 2a). We partitioned the time series 

in segments of 𝑁1 =256 points,  corresponding to 10.26 integration units, as shown in 

Figure 2b: {𝑥1,𝑥2,, … , 𝑥𝑁1
}, {𝑥2 ,𝑥3,, … , 𝑥𝑁1+1}, … {𝑥𝑁−𝑁1 ,𝑥𝑁−𝑁1+1, … , 𝑥𝑁}. This time 

window was chosen in a way consistent with Taken’s criterium. A typical time delay 

would be about one third of the shortest characteristic recurrence, and the system was not 

expected to need more than five dimensions for its reconstruction. That led us to consider 

a temporal window of at least 4/3 of the duration of the time series segment approximating 

the period one orbit. This process resulted in 374488 elements that we used to train and 

test an autoencoder. The first seventy percent of the data was used to train the network, 

and the last thirty percent was used to test it.  

 

The network was implemented on Keras version 2.3.1, backened by Tensorflow 1.15.2. 

Each neuron was modelled as a ReLU unit, except for the neurons in the middle layer 

which were modelled as linear units (25). The minimization of the Mean Square Error 

(MSE) between the entry and exit layers was used to train the network, through an Adam 
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 5 

algorithm with learning rate 𝑙𝑟 = 0.001, 𝛽1 = 0.9 and 𝛽2 = 0.999  (26). The batch size 

was 32 samples and a Glorot uniform initializer was used for weight initialization (27). 

Autoencoders were trained for 91 epochs, this stopping criterion was chosen to guarantee 

that the average percentage change of the test MSE was lower than 1%. We did not 

perform a systematic search in the hyperparameter space to optimize the MSE on the test 

set. 

 

The values of the variables representing the three neurons of the middle layer were used 

as a multi-valued environment: our prospective new embedding. In this particular case, 

we already know that the minimum number of dimensions in which we can express the 

underlying dynamical system is 3. In a general situation, one can choose the dimension 

of the latent space by studying the reconstruction MSE. For example, in our case, 

evaluating networks with 2,3,4 and 5 shows that a qualitative improvement occurs when 

we use three units or more: the MSE for two units is one order of magnitude larger than 

the MSE obtained with three units. In other words, two units in the middle layer do not 

allow a proper reconstruction of the flow, since the loss of information is too large (see 

Figure 2d). 

 

To numerically compute the Linking Number between two three-dimensional oriented 

curves, as explained in the previous section (See Figure 1), we programmed a function in 

Python language, the source code is available on a public repository (28). To estimate the 

Lyapunov exponents we used the numerical methodology proposed by Eckmann and 

Ruelle (29,30). We implemented the algorithm in python, based on code taken from the 

Nonlinear Measures for Dynamical Systems library (31). 

 

Results 

 

Out of the numerical simulations of our dynamical system (see Figure 3a), we singled out 

three segments which were good approximations of unstable periodic orbits coexisting 

with the chaotic solution obtained in our numerical experiment (see Figure 3b). We 

defined a Poincare section {𝑦 = 0}, and first, we looked for a segment of the original flow 

where the distance between two consecutive intersections of the flow with the section 

was a minimum (period 1, solution P1). We repeated the procedure for an orbit crossing 

the section twice (period 2,  solution P2), and three times (a period 3,  solution P3, which 

is one of the two solutions of period three that can be found in the Rössler system). We 

numerically computed the Linking Numbers between these approximations of periodic 

orbits in the Rössler system, obtaining: 𝐿𝑖𝑛𝑘𝑖𝑛𝑔 (𝑃1, 𝑃2) = −1, 𝐿𝑖𝑛𝑘𝑖𝑛𝑔 (𝑃1, 𝑃3) =

−1, 𝐿𝑖𝑛𝑘𝑖𝑛𝑔 (𝑃2, 𝑃3) = −2. 

 

We compared this organization of the segments in the original phase space, with the 

organization of the segments in the latent space (i.e., the multi-valued environment where 

the coordinates are the activities of the neurons in the middle layer of the autoencoder). 

In Figure 3d, we display this multi-valued environment for the whole time series for one 

of the sixty trained networks, and in Figure 3e, we display the reconstruction for the three 
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 6 

segments approximating periodic solutions in the original flow. In this example the 

autoencoder training leads to a correct embedding: the periodic orbits in the latent space 

have a topological organization identical to that of the original orbits (see Figure 3e).  

 

It is interesting to explore how the neural network achieves this embedding of the time 

series. We inspected the topological structure of the orbits, reconstructed from the 

variables of the latent space at different epochs during the training procedure, for sixty 

different autoencoders. In the first epoch, the sixty autoencoders gave rise to wrong 

topologies (See Figure 4a). At successive epochs, the mean square errors (MSE), which 

indicate the difference between the input and output layers, typically decrease, and the 

percentage of networks leading to a correct topology increases. After ninety epochs, 53 

models lead to the right topological organization between the reconstructed orbits, 

whereas 7 do not. To ensure we were not cutting the training too soon, we continued 

training models with incorrect topology for 90 more epochs. None of them changed its 

topology during this process. In Figure 4b we show the evolution of the MSE during the 

training procedure for the 60 models segregated by topological structure. Notice that the 

MSE typically reaches a plateau after ninety epochs. In Figure 4c we show the linking 

numbers between the three orbits for different epochs. In this particular numerical 

experiment, the autoencoder leads to a proper reconstruction of the topology after twenty-

nine epochs. 

 

Remarkably the majority of the autoencoders provide the right topological organization 

between the reconstructed orbits. But it is also important to notice that more than 10% of 

them do not, even after their MSE has reached a plateau, a benchmark commonly used to 

end the training procedure. Moreover, models that do not constitute a proper embedding 

can present a much lower MSE than that of others that lead to a correct one (see error 

bars in Figure 4b).  

 

It is interesting to analyse what happens in the reconstructions that lead to an incorrect 

topology. To this end, we explored whether the vectors describing the flow at nearby 

points in the reconstructed space were mostly parallel (32). We computed the cosine of 

the angle formed by directions of the flow in neighbouring trajectories for 25000 points 

in the test set. For the majority of the points, this value is very close to 1, indicating almost 

parallel directions (i.e., nearby points share similar futures). But, if we look at the 50 

points with the lowest values in each autoencoder, there is a significant difference 

between those with correct topology, 0.93 (0.88 - 0.96), and those with an incorrect one 

0.79 (0.46-0.87). Values are reported as median (interquartile range). This result suggests 

that there are regions in the latent space where autoencoders leading to wrong topologies 

present self-intersections in the reconstructed trajectories, since points in a small box of 

the phase space display qualitatively different futures (32). This does not happen in those 

that lead to a correct topology.  

 

Strange attractors can also be characterized by the Lyapunov exponents (30), which 

describe the sensitivity of the flow to different initial conditions and allow to reconstruct 
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 7 

metric properties as the flow’s dimension. In Table 1 we present the values of the first 

Lyapunov exponent for the Rössler attractor in the original space and in the latent space. 

Unlike linking numbers, the values of the Lyapunov exponents change for different 

system's parameters (a,b and c). We trained 20 autoencoders with data coming from 

systems with two other sets of parameters, and the results are also shown in Table 1. 

These show that the reconstructed attractors with correct topology present values close to 

the one computed for the original attractor, while those with incorrect topology present 

significantly higher values. 

 

A natural question is whether these results hold for time series with noise. To explore this 

issue, we trained 20 autoencoders using the same methodology detailed in methods, but 

adding noise to the input time series x of the Rössler equations. The noise was Gaussian 

white noise, with zero mean, and a standard deviation equivalent to 5% of the standard 

deviation of x. When analysing the topology of the reconstructed attractors, we found that 

17 autoencoders (85%) gave rise to the right topology, a ratio very similar to the one 

obtained with non-noisy time series data. Although this subject requires further 

investigation, the autoencoder embedding methodology seems to be robust under noise. 

 

 

Discussion 

 

Takens’ embedding theorem has been a breakthrough in our understanding of nonlinear 

systems. Reconstructed attractors through Takens’ embeddings were used to compute 

fractal dimensions in experimental data, identify the geometric operations in phase space 

behind the data, as well as to characterize the topological organization of the orbits, with 

its applications to model validation. Recently, very successful computational methods 

have been developed to reconstruct nonlinear dynamical system from data (1-7), and 

autoencoder networks were proposed as a novel way to make an embedding of the data 

into a reduced space where the dynamics may be simply represented (8-11). Given the 

enormous success of deep neural networks in finding intricate structure in large data sets, 

we anticipate that autoencoder related methods will became the new standard in the field 

(19,20). Yet these should be used with care. In this paper we studied the flow 

reconstructed by autoencoders from time series data generated by a chaotic system. We 

found that, even if this promising technique has the potential to generate embeddings of 

data, some of the flows reconstructed by neural networks trained with standard learning 

algorithms and metrics present the wrong topology. This raises a warning on the use of 

latent spaces as proper embeddings. 
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Figures 
 

 

 

 
 

 

Figure 1 

Linking Number computation between two three dimensional oriented curves. a) The four 

possible types of intersections in the two-dimensions projected curves. The colour of the 

circle at the intersection indicates which is the upper curve, while the sign indicates 

whether the intersection contributes + 1
2⁄   or − 1

2⁄  to the linking number. b) Examples 

of two pairs of curves, one with linking number −1 and the other with +2. 
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Figure 2 

Autoencoders generate embeddings a) We simulated a strange attractor using a Rössler 

dynamical system. b) Fragments of 256 points were used to train a neural network. c) The 

architecture of our nine level layer. The cost function being minimized is the Mean Square 

Error between the input and output layers. d) The dimensionality of the middle layer was 

chosen as the minimum one that guarantees a qualitative gain in terms of MSE reduction. 

With a layer of two units, the MSE is an order of magnitude larger than with 𝑁𝑚𝑖𝑑𝑑𝑙𝑒 ≥

2. 
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Figure 3 

Comparison between the original flow, and the one reconstructed with the autoencoder. 

In the first column we show the original attractor and the reconstructed one. In the second 

column, we display the approximations of the periodic orbits in the original flow, and in 

the reconstructed ones. The third column displays the computation of the linking numbers 

for the cases of period 1 and 2. Both for the original and the reconstructed flows, 

𝐿𝑖𝑛𝑘𝑖𝑛𝑔 (𝑃1, 𝑃2) = −1. 
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Figure 4 

The results of training 60 autoencoders a) Proportion of reconstructed attractors with the 

right topological organization, for different epochs of the training. b) Evolution of the 

Mean Square Error during the training, discriminated by their topological structure. The 

points indicate the mean MSE, and the bars, their standard deviation. c) Example of a 

training process. At the top, we show the evolution of the MSE for the training and test 

sets. At the bottom, the linking numbers of the orbits in the reconstructed flow. The red 

indicates a topological organization different from that of the original flow. The green 

cells correspond to topological indexes as in the original flow.  
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Tables 
 

 

     First Lyapunov Exponent 

Parameters Number of Autoencoders 

Original 
System 

Latent Space 

a b c 
Correct 

Topology 
Incorrect 
Topology 

Correct 
Topology 

Incorrect 
Topology 

0.1 0.1 14 53 7 0.072 
0.076 (0.072 - 

0.094) 
0.09 (0.081- 

0.208) 

0.12 0.12 9 17 3 0.068 
0.069 (0.067 - 

0.084) 
0.074 (0.073 - 

0.087) 

0.11 0.11 13 16 4 0.086 
0.093 (0.088 - 

0.121) 
0.248 (0.22 - 

0.302) 

 

Table 1 

Values of the first Lyapunov exponent for the original and reconstructed attractors of 

Rössler systems with different sets of parameters. Values are reported as median 

(interquartile range). 
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