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(Received 10 June 2016; accepted 24 August 2016; published online 8 September 2016)

We develop an extension of the Ott-Antonsen method [E. Ott and T. M. Antonsen, Chaos 18(3),

037113 (2008)] that allows obtaining the mean activity (spiking rate) of a population of excitable

units. By means of the Ott-Antonsen method, equations for the dynamics of the order parameters of

coupled excitatory and inhibitory populations of excitable units are obtained, and their mean activi-

ties are computed. Two different excitable systems are studied: Adler units and theta neurons. The

resulting bifurcation diagrams are compared with those obtained from studying the phenomenolog-

ical Wilson-Cowan model in some regions of the parameter space. Compatible behaviors, as well

as higher dimensional chaotic solutions, are observed. We study numerical simulations to further

validate the equations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962326]

An active area of research in Physics deals with establish-

ing connections across different scales of description for

out-of-equilibrium systems. This is the reason why, for

example, macroscopic models of nervous systems are usu-

ally made phenomenologically as opposed to statistically.

In 2008, Ott and Antonsen developed a statistical method

for obtaining the evolution of the macroscopic “order

parameter” of a large ensemble of coupled oscillators,

which describes its degree of synchronization.
1

This

method has recently been applied to densely connected

neural populations. However, it is often the case that the

mean activities of the populations (i.e., their spiking

rates) are the variables of interest, particularly for

behavioral control. In this paper, we extend the Ott-

Antonsen method, in order to obtain equations for the

mean activity of a population in terms of its order param-

eter. We apply this result to two different models of a

“neural oscillator,” consisting of coupled excitatory and

inhibitory populations of excitable units, and compare

the resulting dynamics with those of the frequently used

phenomenological Wilson-Cowan model. We obtain com-

patible behaviors in a wide range of parameter values, as

well as more complex chaotic solutions.

I. INTRODUCTION

The description of how thousands of fireflies, crickets,

or neurons fall into step, collectively synchronizing, has

attracted the attention of dynamicists for decades. Winfree

made significant progress in this field by arguing that in cer-

tain limits, amplitude variations could be neglected, and the

oscillators could be described solely by their phases along

their limit cycles.2 Kuramoto introduced a model for a large

set of weakly coupled, nearly identical oscillators, with

interactions depending sinusoidally on the phase difference

between each pair of units.3 Interestingly, stationary solu-

tions of this nonlinear model can be solved exactly, in the

infinite-N limit, with the application of self-consistency

arguments.4

In 2008, Ott and Antonsen introduced an ansatz for study-

ing the behavior of globally coupled oscillators,1 which has

been the most convenient for studying continuous time-

dependent collective dynamics. The ansatz refers to the statisti-

cal description of the oscillators, and the result of this technique

is a low dimensional system of reduced equations that describe

the asymptotic behavior of the order parameter of the system.

This order parameter, which is the resultant phasor of the sys-

tem, describes the degree of synchrony of the ensemble.

Phase equations are not only an adequate representation

for oscillatory dynamics but they can also describe the

dynamics of a class of excitable systems, and large sets of

coupled excitable units are a natural proxy for understanding

the dynamics of many dynamically rich systems, neural net-

works among them. Recently, the Ott and Antonsen ansatz

was used to explore the macroscopic dynamics of large

ensembles of coupled excitable units.5–7 Yet, the macroscopic

dynamics in those works was described in terms of the order

parameter (as in the case of coupled oscillators), while for the

study of neural arrangements, a natural macroscopic observ-

able is the activity of the network.8,9

In this work, we study the average activity of a large set

of coupled excitable units. We are interested in a particular

architecture: the neural oscillator, built out of coupled excit-

atory and inhibitory units. We show that the average activity

of the network can be analytically computed in terms of the

order parameters of the problem and investigate the dynamics

displayed by those macroscopic variables. We compare our

results with the solutions of the phenomenologically derived

Wilson-Cowan dynamical system. The comparison between

the analytical expressions and the averages computed from

numerical simulations allows us to unveil the subpopulation

dynamics that coexist with different average behaviors. We

analyze two different cases. In the first one, the dynamics of

the individual units (both excitatory and inhibitory) is mod-

eled by Adler’s equations.10 In the second case, the individual

units are “theta neurons.”11 In both cases, we emphasize the

similarities and differences between the macroscopic solutions

and those of the phenomenological Wilson-Cowan system.
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The work is organized as follows. Section II presents the

analysis of the first model, which consists of a set of impul-

sively coupled excitable phase oscillators, whose individual

dynamics are ruled by Adler’s equations. Section III contains

the analytical results for that case, which include the compu-

tation of the average activity as a function of the order

parameters of the problem. Section IV presents a similar

analysis for the second case under study, corresponding to

the theta neurons. In Section V, we discuss the bifurcation

diagrams for the order parameter equations of the two mod-

els under analysis, and we compare them with a bifurcation

diagram for the Wilson Cowan model. We report regions of

the parameter space where the dynamics of our macroscopic

models derived from first principles is similar to those of the

phenomenological Wilson-Cowan system. We also report

and discuss the departures from it. Numerical simulations of

extended systems are described in Section VI. We finish

with our discussion and conclusions in Section VII.

II. COUPLED ADLER’S EQUATIONS

By “neural oscillator,” we refer to an ensemble of two

large populations of globally coupled excitable units: one

excitatory and the other inhibitory. The proposed dynamics

for the individual units is a phase oscillator in an excitable

regime. One hypothesis in this approach is that all the rele-

vant information about the internal state of an individual unit

can be contained in a phase variable h on the unit circle.

Consequently, the microscopic variables in our model are as

many phases fhig as there are units in the population. If

these excitable oscillators are used to model the dynamics of

neurons, then the cycles of h are interpreted as the neuron’s

spikes.

One widely used model of an excitable oscillator is

given by the Adler equation _h ¼ xi � cos hi.
10 It features a

Saddle-Node in Limit Cycle (SNILC) bifurcation at x¼ 1,

which is the known mechanism for the onset of spiking

activity in Type-I neurons. For xi � 1, the unit is said to be

in the excitable regime, with a stable resting state close to an

unstable one, near h � 0. That is, perturbations to the resting

state larger than a certain threshold can trigger a large reac-

tion on the system (a “spike”). The threshold size depends

on x, which can be interpreted as the intrinsic excitability of

the unit. The Adler model has another SNILC bifurcation at

x ¼ �1, where the unit starts spiking with its phase running

backwards (an unwanted dynamical feature if the excitable

units are asked to represent neurons).

In turn, the units are supposed to be globally coupled, so

that their evolutions obey the following equations:

_hiðtÞ ¼ xi � cos hiðtÞ þ IðfhjðtÞg; f~hjðtÞgÞ; ð1aÞ
_~h iðtÞ ¼ ~xi � cos ~hiðtÞ þ ~IðfhjðtÞg; f~hjðtÞgÞ; ð1bÞ

(

where the untilded variables refer to the units in the excit-

atory population, and titled variables (�) to the inhibitory

ones. The first two terms in Eq. (1) describe the internal

dynamics of each unit in the neural oscillator, and the cou-

plings I; ~I parametrize the interaction between them. These

are chosen to be

I hj

� �
; ~hj

n o� �
¼ kE

N

XN

j¼1

1� cos hj

� �
� kI

~N

X~N

j¼1

1� cos ~hj

� �
;

(2a)

~I hj

� �
; ~hj

n o� �
¼

~kE

N

XN

j¼1

1� cos hj

� �
�

~kI

~N

X~N

j¼1

1� cos ~hj

� �
;

(2b)

where the different k, ~k > 0 describe the coupling strengths

between neurons, and N and ~N are the number of neurons in

each of the two populations. The functional form is chosen

so that the j-th unit influences the others via an impulsive

term proportional to ð1� cos hjÞ. This term is maximum at

hj ¼ p (where the spike occurs), and nearly zero close to the

resting state hj � 0. It differs from the Kuramoto coupling

sinðhi � hjÞ in that it only depends on the phase of the pre-

synaptic unit, and it is always excitatory for excitatory units

(and inhibitory for inhibitory units). This is represented by

the sign accompanying each term, which determines whether

the phases of the post-synaptic units are driven towards or

away from threshold from the resting states.

A first macroscopic variable describing the collective

behavior of the system, the Kuramoto order parameter, can

be defined for each of the two sub-populations, averaging

their phasors

z tð Þ ¼ 1

N

XN

j¼1

eihj tð Þ; (3a)

~z tð Þ ¼ 1

~N

X~N

j¼1

ei~h j tð Þ: (3b)

These variables account for the synchrony within the

sub-populations: if all the oscillations are in phase, these

order parameters will present moduli equal to one. On the

other hand, if the populations are active, i.e., with units spik-

ing, but out of synchrony, the order parameters will present

small values. In this sense, the order parameters do not cap-

ture all the features of a macroscopic state.

These order parameters allow us to rewrite Eq. (2) in a

compact way

Iðz; ~zÞ ¼ kEð1� Re zÞ � kIð1� Re ~zÞ; (4a)

~Iðz; ~zÞ ¼ ~kEð1� Re zÞ � ~kIð1� Re ~zÞ; (4b)

which makes the system in Eq. (1) suitable to the application

of the method introduced in 2008 by Ott and Antonsen.1 The

essence of the computation consists in describing the state of

each population of neurons through a distribution function,

expanding it in Fourier modes, and using a continuity equa-

tion to derive the dynamical rules governing their behavior.

Following their procedure, we first approximate the problem

assuming an infinite population. The system description is

now made in terms of the distributions f ðh;x; tÞ; ~f ðh;x; tÞ
that represent the density of units with a given excitability x
and phase h in the excitatory and inhibitory populations,

respectively. In the following discussion, we show the steps
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of our calculation for the excitatory population, and a

completely analogous procedure is carried out for the inhibi-

tory one.

The distribution functions are normalized so thatð1
�1

dx
ð2p

0

dh f ðh;x; tÞ ¼ 1;

with the excitabilities distributed according to

gðxÞ ¼
ð2p

0

f ðh;x; tÞdh; (5)

which is time-independent since the excitabilities are

assumed to be constant. In this representation, the order

parameters will be expressed as integrals, namely,

zðtÞ ¼
ð1
�1

dx
ð2p

0

dh f ðh;x; tÞeih;

and our macroscopic questions can be addressed as we com-

pute the distributions f and ~f .

Conservation of neurons with excitability x means that

these satisfy the continuity equation

@f

@t
þ @

@h
f vð Þ ¼ 0; (6)

where the velocity is

vðh;x; tÞ ¼ x� cos hþ IðzðtÞ; ~zðtÞÞ: (7)

One way to solve this problem consists of performing a

mode decomposition of the distributions and finding the

dynamics of the mode amplitudes. By virtue of Eq. (5), f can

be decomposed as

f h;x; tð Þ ¼ g xð Þ
2p

1þ
X
nP1

an x; tð Þe�inh þ c:c:
� 	
 �

; (8)

where c.c. means the complex conjugate of the preceding

term. In principle, substitution of Eq. (8) in Eq. (6) leads to

an infinite set of equations for the evolution of each an. Yet,

Ott and Antonsen found an ansatz (OA ansatz) that simplifies

the problem1 by proposing

anðx; tÞ ¼ ½aðx; tÞ�n: (9)

The equations for all the modes are satisfied as long as the

first mode satisfies

@a
@t
¼ i xþ I z; ~zð Þð Þa� i

2
1þ a2ð Þ: (10)

The relation between a and z is obtained by multiplying

Eq. (8) by eih and integrating in h and xð1
�1

gðxÞaðx; tÞdx ¼ zðtÞ; (11)

(aðx; tÞ can be interpreted as an order parameter restricted to

the units with excitability x). To solve Eq. (10), we still

have to compute the integral in Eq. (11), which requires

assuming a specific distribution gðxÞ for the system’s excit-

abilities. The Lorentzian distribution is particularly useful

here. It is defined as

g xð Þ ¼ D
p

1

x� x0ð Þ2 þ D2
; (12)

which has a maximum at x0 and a half-width at half-

maximum D. Setting gðxÞ as in Eq. (12) and assuming that

aðx; tÞ is analytic in the complex x upper half-plane, we can

solve Eq. (11) by contour integration, evaluating a at the

pole x0 þ iD

aðx0 þ iD; tÞ ¼ zðtÞ: (13)

Evaluating Eq. (10) at the pole, the partial differential

equations for the first mode amplitudes a and ~a become a

coupled, 4-dimensional dynamical system of the first order

ordinary differential equations for the order parameters,

namely,

_z ¼ �Dþ i x0 þ I z; ~zð Þð Þ½ �z� i

2
1þ z2ð Þ; 14að Þ

_~z ¼ �~D þ i ~x0 þ ~I z; ~zð Þ
� �h i

~z � i

2
1þ ~z2ð Þ: 14bð Þ

8>><
>>:

Ott and Antonsen demonstrated that the ansatz Eq. (9)

defines an invariant manifold, which is globally attracting

for the order parameters under very general conditions.12 In

this way, Eq. (14) describes the long term solution of the

problem, regardless of the initial conditions.

III. COMPUTATION OF THE AVERAGE ACTIVITY

As we discussed in Section II, the order parameters z and

~z describe the degree of synchrony of the system. Another

sensible description of its macroscopic behavior is the level of

activity of the sub-populations, understood as the total number

of spikes taking place per unit of time. This quantity can be

computed as the flux of phasors through h ¼ p

/ðtÞ ¼
ð1
�1

f ðh;x; tÞvðh;x; tÞ
����
h¼p

dx; (15a)

~/ðtÞ ¼
ð1
�1

~f ðh;x; tÞ~vðh;x; tÞ
����
h¼p

dx; (15b)

with v;~v satisfying Eq. (7). A convenient expression for

f ðp;x; tÞ can be obtained by imposing the OA ansatz Eq. (9)

explicitly in Eq. (8). Now, each sum becomes a geometric

series that can be written in terms of a

X
nP1

ane�ipn ¼
X
nP1

�að Þn ¼ 1

1þ a
� 1:

The expression for f given in Eq. (8) is not analytical

when extended to the complex plane, because of the appear-

ance of a� in the complex conjugate term, and therefore, Eq.

(15) cannot be integrated by means of the residue theorem.

In order to solve this problem, we propose decomposing
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f into two terms, one of them analytical, and the other its

complex conjugate. This yields

f p;x; tð Þ ¼
g xð Þ
2p

1

1þ a x; tð Þ
� 1

2

� 	
þ c:c:; (16)

/ tð Þ ¼
ð1
�1

g xð Þ
2p

1

1þ a x; tð Þ
� 1

2

� 	
v p;x; tð Þdxþ c:c:;

(17)

since both g and v are real for real x and therefore equal to

their complex conjugates. The integrand in Eq. (17) is now

analytical and we can apply the residue theorem.

This integral needs to be evaluated in principal value, as

vðxÞ � x for large x, causing the integral to diverge in

61. The infinite contribution to the mean activity made by

the “unphysical” units with x!1 is canceled by the nega-

tive infinite activity of the equally unphysical units with

x! �1, leaving only the contribution of the (“physical”)

intermediate x units. In Appendix A, we give a rigorous

method for avoiding these infinities by slightly changing the

distribution function gðxÞ.
We can perform the integral in Eq. (17) by means of the

residue theorem. To do so, we enclose the upper complex

half-plane with a semicircle of radius R!1 and subtract

its contribution to the integral, which yields

/ tð Þ ¼ 1

2p
1

1þ z tð Þ �
1

2

� 	
v x0 þ iD; p; tð Þ




þ lim
R!1

iD
2p2

ðp

0

1

a Reiu; tð Þ þ 1
� 1

2

� 	
du

�
þ c:c:;

where we made use of Eq. (13) to write the first term as a

function of the order parameter. Using that aðx; t > 0Þ ! 0

as Im x!1 (which follows from Eq. (10)), we can per-

form the integral in the second term. This leads to the impor-

tant result

/ z; ~zð Þ ¼ 1

p
1þ Re z

j1þ zj2
� 1

2

 !
x0 þ 1þ I z; ~zð Þð Þ þ D

p
Im z

j1þ zj2
;

(18a)

~/ z; ~zð Þ ¼ 1

p
1þ Re ~z

j1þ ~zj2
� 1

2

 !
~x0 þ 1þ ~I z; ~zð Þ
� �

þ
~D
p

Im ~z

j1þ ~zj2
:

(18b)

Equations (18) give an explicit relation for the mean

activities in terms of the order parameters. They were

obtained under the OA ansatz without making any additional

assumption. In this way, once we compute the order parame-

ters satisfying our nonlinear ordinary differential equations

(14), we can obtain the activity of each sub-population by

the evaluation of the algebraic expression above.

This result allows to make a connection between the

order-parameter-based description of the neural oscillator

suggested by the Ott-Antonsen statistical method and the

mean-activity-based description made by phenomenological,

additive models (as the Wilson and Cowan neural oscillator

model). A similar search for a macroscopic description of

coupled excitable cells in terms of activity was carried out

recently by Montbri�o et al. in Ref. 9. Another derivation of

activity rates in a population of theta neurons, valid for order

parameters constant in time, was done in Ref. 13.

Note that the mean activities obtained from Eq. (18)

are a projection of the 4-dimensional dynamics given by Eq.

(14), while the Wilson-Cowan model obeys a simpler,

2-dimensional system. Thus, their qualitative behaviors can

only be compatible if a further dimensional collapse occurs.

IV. RESULTS FOR THE THETA NEURON MODEL

A word of caution should be said about the conse-

quences that the Lorentzian distribution proposal has on the

mean activity defined by Eq. (15). In general, the single-unit

models subjected to the Ott-Antonsen method are meaning-

ful in a range of parameter values (physical regime) but

feature some kind of pathological behavior when the fre-

quency parameter becomes large, like the arbitrarily fast or

“backward” spikes in the Adler model presented above.

However, the Ott-Antonsen prescription requires integrating

a nonzero (Lorentzian) distribution over the whole infinite

range of frequencies. It is difficult to prevent the single-unit

models from having some unphysical regime at big parame-

ter values (for example, by changing the phasor velocities’

dependence with x), because our prescription for computing

the mean activities requires that g � v be analytical and inte-

grable in the whole upper complex x plane. Thus, we can try

to overcome this problem by choosing a narrow distribution

width D, so that the vast majority of the units lie in the physi-

cal regime. Indeed, the impact of the unphysical units in the

order parameter dynamics is limited, since the influence

�ðk=NÞð1� cos hÞ that each neuron has on the others is

bounded by 2k=N, independently of the spiking frequency.

In this way, “a small proportion of unphysical units” means

that they make a small contribution to the system dynamics.

However, we defined the mean activity as the spiking fre-

quency of the population, to which the unphysical units can

significantly contribute. We have shown in Appendix A the

mechanism by which the problem resolves in the Adler-units

model, which involves the cancellation of opposite diverging

contributions made by the high- and low-x tails of the

Lorentzian distribution.

It is worth exploring a model for which no parameter

value places the units into a backwards oscillation. This can

be achieved if the individual units are “theta neurons,” a

canonical model for Type-I excitability neurons.11 The pro-

posed dynamics for the individual units is also a phase oscil-

lator in an excitable regime, but the equation driving its

dynamics is given by

_hiðtÞ ¼ 1� cos hiðtÞ þ ð1þ cos hiðtÞÞgi; (19)

where now g plays the role of the frequency parameter. As in

the previous model, the system undergoes a saddle node in a

limit cycle, a global bifurcation leading the unit from an

excitable regime to an oscillatory one, at g¼ 0. The main

difference between this model and the previous one is that

now no parameter value puts our units into a backwards
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oscillation. This automatically resolves the divergence in the

negative g end of the integral in Eq. (15). The spiking fre-

quency of the individual (uncoupled) neurons still diverges

for large g, but now only as
ffiffiffi
g
p

instead of linearly: sðgÞ ¼

Ð 2p
0

_h
�1

dh ¼ p=
ffiffiffi
g
p

for g > 0. The g�2 decay of the

Lorentzian function is then sufficient to render the integral

finite.

The equations now read

_hiðtÞ ¼ 1� cos hiðtÞ þ ð1þ cos hiðtÞÞ gi þ I fhjðtÞg; ~hjðtÞ
n o� �h i

; ð20aÞ

_~h iðtÞ ¼ 1� cos ~hiðtÞ þ ð1þ cos ~hiðtÞÞ ~gi þ ~I fhjðtÞg; ~hjðtÞ
n o� �h i

; ð20bÞ

8>><
>>:

with I and ~I given by Eq. (4).

A procedure analogous to the one followed in Section II

leads to the following equations for the order parameters

_z ¼ 2izþ 1

2
�Dþ i g0 � 1þ I z; ~zð Þð Þ½ � zþ 1ð Þ2; 21að Þ

_~z ¼ 2i~z þ 1

2
�~D þ i ~g0 � 1þ ~I z; ~zð Þ

� �h i
~z þ 1ð Þ2: 21bð Þ

8>>><
>>>:

The computation of the activity for the populations can

be carried out by following the steps described in Section III,

and we obtain

/ zð Þ ¼ 2

p
1þ Re z

j1þ zj2
� 1

2

 !
; (22a)

~/ ~zð Þ ¼ 2

p
1þ Re ~z

j1þ ~zj2
� 1

2

 !
: (22b)

Notably, in this case, each sub-population’s activity is

determined solely by its order parameter (i.e., it does not

depend on the order parameter of the other sub-population).

V. BIFURCATION DIAGRAMS

In this section, we compare a bifurcation diagram of the

Wilson-Cowan neural oscillator with the diagrams obtained

for the coupled Adler units and for the coupled theta neu-

rons. The local bifurcations were computed numerically with

PyDSTool.14

The Wilson-Cowan oscillator is a phenomenologically

derived model for the activity of two coupled neural popula-

tions, excitatory and inhibitory. The variables x and y repre-

sent their activities, and their dynamics are prescribed by the

following differential equations:

_x ¼ �xþ Sðqx þ ax� byÞ; ð23aÞ
_y ¼ �yþ Sðqy þ cx� dyÞ; ð23bÞ

(

where SðnÞ ¼ 1=ð1þ e�nÞ is a sigmoidal function that repre-

sents the nonlinear nature of the response: beyond some

input level, the average activity of a population no longer

increases its value. The excitatory or inhibitory nature of x
and y is represented by the sign accompanying the positive

coupling parameters a, b, c, and d. The parameters qx and qy

describe the external inputs to the excitatory and inhibitory

populations, respectively. For instance, these could be from

other regions of the nervous system and are expected to be

the most dynamical system parameters. Therefore, it is use-

ful to understand the bifurcation diagram for the parameters

qx and qy.

The region of the parameter space that we chose to dis-

play in Fig. 1 presents a variety of dynamical regimes. At the

blue dashed curves labeled as “Hopf,” oscillations are born in

Hopf bifurcations. The curves labeled “SN” correspond to

saddle node bifurcations, where saddles and attractors (or

repulsors) meet and disappear. “SNILC” denotes the saddle-

node in a limit cycle bifurcation. In this case, before the disap-

pearance of a saddle and a node, the unstable manifold of the

saddle was part of the stable manifold of the attractor. In this

way, at the bifurcation, the manifolds become a limit cycle,

and an infinite period bifurcation of finite (nonzero) amplitude

is born. The juncture of two SN curves is known as “cusp,”

and these two colliding SN curves delimit a region in the

parameter space where three fixed points exist (labeled 5, 6,

and 2 in Fig. 1(b)). The global description of the stationary

dynamics is the following: increasing qx, the attractor with

small x value and a saddle collide, and the only surviving

attractor is one with high x value: the system has been excited

(regions 3 and 4, the right side of 1/4). Analogously, decreas-

ing qx leads to the disappearance of the excited attractor and

the surviving attractor is the “off, nonexcited” state (region 1,

the left part of 1/4). In between Hopf bifurcation lines

(regions 3 and 6), the system displays stable oscillations: the

excitatory and inhibitory populations get to be sequentially

excited. The dotted green line, labeled “Hom,” corresponds to

a homoclinic bifurcation, at which a limit cycle collides with

the saddle of the system. This curve is born tangent to a SN

curve at a point where a Hopf and a SN curves touch, a

codimension-2 Bogdanov-Takens bifurcation (“BT”), and

dies nontangent at another SN curve, in a Saddle-Node in

Saddle-Loop (SNSL) codimension-2 bifurcation.

Fig. 2 displays the bifurcation diagram that we obtained

studying Eqs. (14) for the order parameters of the Adler sys-

tem, at the parameter values that we report in the caption.

Each circular inset represents the jzj61 disk, where the limit

sets of the system in Eq. (14) at different parameter values

are projected. Fig. 3 displays a similar diagram, for the equa-

tions of the theta neuron model. Both diagrams show a direct

correspondence in their bifurcations and the limit sets in
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each region. The two SN curves approach significantly,

which suggests the presence of a cusp bifurcation (an 8�
2 ¼ 6 dimensional hypersurface in the 8-dimensional param-

eter space) nearby. However, these curves do not intersect,

rather they approach and then separate (Fig. 2(b)), which

means that the cusp does not cross the hyperplane defined by

our parameter choice. We conjecture that the regions 1 and 4

are actually the same region at the two sides of the postulated

cusp (i.e., in the full parameter space, they could be con-

nected without crossing any bifurcation). Then, these bifur-

cation diagrams also match the Wilson-Cowan one,

displayed in Fig. 1(b). They both share with the Wilson-

Cowan model the coexistence of “on” and “off” stationary

attracting states separated by a saddle, the existence of sim-

ple oscillations where the activity of the competing popula-

tions alternate, and a series of global bifurcations that allow

the possibility of oscillations with critical slowing down.

Recently, complex motor patterns in birdsong produc-

tion were described as the solutions displayed by a neural

oscillator at the expiratory related area of the song system,

when driven by inputs from other neural structures.15 In that

model, the key dynamical feature that allows reproducing

those patterns was associated with the proximity between a

SN and a Hopf curve, a dynamical scenario present in the

Wilson-Cowan, and shared by the solutions of the average

equations derived from the first principles.

Since the equations for the order parameters (in the two

models analyzed in this work) are four dimensional, it is pos-

sible to find behaviors more complicated than the one present

in the Wilson-Cowan model. As an example, Fig. 4 displays

FIG. 1. Bifurcation diagram of the

Wilson-Cowan model (Eq. (23)) for the

parameters qx and qy. The remaining

parameters have been set to a¼ 15,

b¼ 15, c¼ 12, and d¼ 5. The right panel

(b) shows a detail near one of the

Bogdanov-Takens bifurcations. The

bifurcation curves define 5 regions with

qualitatively different limit sets. The

insets show limit trajectories in the phase

space (x, y) at parameter values represen-

tative of each region, labeled 1–6: filled

dots represent stable fixed points, empty

dots represent unstable fixed points, and

closed curves represent limit cycles.

Regions 1 and 4 have been identified to

help later comparison to the other models.

FIG. 2. (a) Bifurcation diagram of the

Adler-units model Eq. (14) for the

parameters x0; ~x0. The remaining

6 parameters were set to D ¼ 0:1; ~D
¼ 0:11; kE ¼ 3:0; ~kE ¼ 2:7; kI ¼ 2:45;
~kI ¼ 2:35. The insets show the z com-

ponent of the limit trajectories in the

z; ~z space for a representative set

ðx0; ~x0Þ in each region. (b) A “zoom

out” of the same bifurcation diagram,

showing the SN curves (solid red)

approaching and separating.

FIG. 3. Bifurcation diagram of the theta neuron model (Eq. (21)) for the

parameters g0 and ~g0. The remaining 6 parameters were chosen as in Fig. 2.
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a chaotic solution. However, in wide regions of the bio-

physically relevant parameter space volume, the system’s

attractors are those characteristic of a two dimensional

dynamical system: fixed points or simple, “untwisted” limit

cycles. In the Adler-units model, this behavior was observed

in about 95% of 6500 runs, varying independently all

8 parameters in Eq. (14) in the ranges: D 2 ½0:05; 0:27�;
x0 2 ½0:6; 1:5�; k 2 ½2; 9:5� for each population.

This suggests the existence of an attracting, invariant

two dimensional manifold within the four dimensional phase

space for those parameter values. Indeed, it is possible to

find it analytically in the special case where the two popula-

tions have symmetric parameters (i.e., x0 ¼ ~x0; D ¼ ~D; kE

¼ ~kE; kI ¼ ~kI). In Appendix B, we show that for this specific

case, the plane manifold z ¼ ~z is invariant and stable. We

expect that departing away from the symmetric case starts

causing a deformation of the two dimensional manifold

before the system explores the full dimensionality. Notice

that the parameters of the bifurcation diagrams in Figs. 2 and

3 are close for fulfilling the symmetry condition, and the sys-

tem displays rich two dimensional behavior. The parameters

of Fig. 4, on the other hand, are not, and the system can

explore a higher dimensionality.

VI. NUMERICAL SIMULATIONS

In this section, we analyze simulations of the full system

Eq. (1), for a network of 104 Adler units in each of the two

populations. These simulations allow to test the validity of

the mean field Eqs. (14) and (18) for the dynamics of the

order parameters and the mean activity, respectively.

Moreover, they help us in gaining further insight into the

role that the synchronization of units at the microscopic level

plays on the macroscopic dynamics.

The order parameters of the simulated populations can

be computed from the individual phases by means of Eq. (3).

The accuracy of the mean field Eq. (14) can be tested by

comparing the simulated and predicted trajectories in the

ðz; ~zÞ space. Furthermore, the mean activity can be computed

in the simulation by definition as the fraction of phasors that

crossed h ¼ p in a small time interval dt divided by dt.
Equation (18) makes a testable prediction of these mean

activities from the order parameters of the simulation.

In the simulations, the sets of individual excitabilities

and initial phases fxi; hig; f~xi; ~hig were chosen so that the

resulting distribution functions satisfied the Ott-Antonsen

ansatz (i.e., were given by Eq. (16)) and had an arbitrary ini-

tial condition for their order parameters. This was achieved

by proposing an uncorrelated initial distribution function

f ðh;x; 0Þ ¼ gðxÞhðhÞ, with gðxÞ given by Eq. (12) and

h hð Þ ¼ 1

2p
1

1� z 0ð Þe�ih
� 1

2

� 	
þ c:c:;

which fulfills both conditions automatically. The initial

phases were chosen randomly according to hðhÞ, and the

excitabilities were generated by taking xi ¼ x0 þ D tan xi

with fxig distributed uniformly in the interval ð�p=2; p=2Þ.
This yields the desired Lorentzian distribution for the fxig.
A similar procedure was applied to the inhibitory population.

The differential equations (1) and (14) were integrated

numerically using the order 4 Runge-Kutta method with a

time step of size 0.01. A time interval of dt ¼ 0:8 was used

to compute the mean activities from the definition as

described above.

Fig. 5 shows the attracting limit sets for the order param-

eters of simulations of the full network at the representative

parameter values chosen in Fig. 2. These are labeled 1–6, for

each of the six regions of the analyzed parameter space. All

the simulations are in good agreement with the mean field

prediction, although the “active” fixed point in regions 4 and

5 presents somewhat large fluctuations with a predominating

frequency (see upper panel of Fig. 6(b)). Simulations with

larger N and ~N present smaller fluctuations (not shown), sug-

gesting that these are due to finite size effects. Even this

behavior can be accounted for by the mean field equation: in

these cases, the stable fixed point lies in a slow two

FIG. 4. (a) Projection of a chaotic attractor for the order parameters of the

Adler units system, at parameters x0 ¼ 0:35; ~x0 ¼ 1:73; D ¼ 0:15; ~D
¼ 0:27; kE ¼ 9:0; ~kE ¼ 5:0; kI ¼ 3:5; ~kI ¼ 2:5. Stable and unstable fixed

points coexist, plotted as filled or empty circles, respectively. (b)

Bifurcation diagram showing the birth of the chaotic attractor as the parame-

ters are changed. In the vertical axis, we plot the imaginary part of the solu-

tion for z at the intersections zn with a Poincar�e section at angle w ¼ �p=2.

At x0 ¼ 0 (and all the other parameters constant), the system has a period 1

limit cycle, seen as a single intersection. Increasing x0 continuously brings

it through a cascade of period-doubling bifurcations that gives birth to the

strange attractor, and a crisis in which it becomes more complex. Further

increase of x0 brings the attractor back to a simple limit cycle through the

same changes in reverse order.
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dimensional manifold to which all trajectories nearby are

rapidly attracted before they spiral into the fixed point, as

linearization of the mean field Eq. (14) at the fixed point

shows. The fixed point has a weak stability along the slow

manifold (notice that it is close to losing it at the Hopf bifur-

cation), and the system is sensitive to fluctuations in those

directions. For example, the Jacobian at the fixed point in

region 4 has eigenvalues k1;2 ¼ �0:02660:49i associated

with the slow manifold and k3;4 ¼ �0:3460:65i associated

with the fast one. From the imaginary part of the slow eigen-

values, we can correctly predict the period of the fluctuation

oscillations, given by s ¼ 2p=0:49 ¼ 12:8. This is in agree-

ment with the one observed in Fig. 6(b). The real parts of

the eigenvalues determine the timescale of the transient

motions, which are an order of magnitude faster in the fast

manifold, supporting the idea of an effective dimensional

collapse.

To validate Eq. (18), we plot in the upper panels of

Fig. 6 the mean activity of the excitatory population obtained

by counting spikes directly (light green) or by computing

it from the order parameters (dark green), as described

above. This is done for each of the three qualitatively different

regimes found: with low, high, or oscillating activity. The

agreement between both methods is impressive. Even in the

active fixed point discussed earlier, the activity obtained from

the order parameters of the simulation accurately reproduces

the fluctuations. These three regimes appear to correspond,

respectively, to the partially synchronous rest state, partially

synchronous spiking state, and collective periodic wave

reported by So et al. in Ref. 7.

We can gain further insight on the mechanisms at the

level of the individual spikes that generate the distinct mac-

roscopic behaviors, by recording, in the simulation, each

unit’s spiking times (i.e., the times at which hi ¼ p). This is

somewhat analogous to the experimentalists’ raster plots, but

for the whole population. Three “raster plots” are displayed

in the lower panels of Fig. 6, one for each of the regimes

studied. In the horizontal axis, we represent time, and in the

vertical axis we display the unit’s index. We ordered the

units according to their intrinsic excitability xi. The dots rep-

resent the individual spikes. Thus, horizontal patterns mean

that each unit’s behavior depends on its individual excitabil-

ity, and vertical patterns are associated with synchronization

between spikes. To make the synchronization structure

clearer, in each case we chose a reference unit that spiked at

regular (maximum) time intervals, thereby defining the fun-

damental frequency of the population. We used the reference

unit’s spikes, plotted as vertical broken lines, as a natural

way to bin time. In this way, each unit in the population fires

an integer number of times in each bin, which we use to

color-code the spikes. Spikes occurring with _hi < 0 are col-

ored in grey, and we see that only a negligible fraction in the

lowest-x end of the population does fire backwards in the

studied cases. The inhibitory population displays behavior

qualitatively similar to the excitatory one in all these cases

(not shown).

FIG. 6. Spiking configuration of the excitatory population at the three quali-

tatively different activity regimes, with (a) low, (b) high, or (c) oscillating

activity, corresponding to the attractors in regions 2, 4, and 3 of Fig. 2,

respectively. The upper panel in each inset shows the mean activity com-

puted by counting spikes (light green) or by means of Eq. (18) from the

order parameters (dark green). The lower panel shows the raster plot of the

full population.

FIG. 5. z component of the attractor sets for the order parameters in a simu-

lation of the coupled Adler units (104 in each population), at the parameter

values labeled 1–6 in Fig. 2.
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Fig. 6(a) shows that in the fixed point solution, the units

either spike non-synchronously or do not spike at all,

depending on whether their intrinsic excitability is above or

below a definite threshold. This can be understood by look-

ing at the coupling terms in Eq. (1), which only depend on

time through the order parameters. For this reason, they pre-

sent a constant value at the fixed point, say I0. Thus, each

unit’s evolution is ruled by _hi ¼ xi � cos hi þ I0, which

yields a threshold of x ¼ 1þ I0 below which units do

not spike. Above it, they spike with different periods

si ¼
Ð 2p

0
ðxi þ I0 � cos hÞ�1

dh, so that no synchronization

can possibly occur at a fixed point for the order parameters.

The election of the reference neuron was arbitrary here, since

this solution has no natural timescale.

The main differences that Fig. 6(b) presents are that a

bigger fraction of the population is above threshold, yielding

a higher mean activity. Although the majority of the popula-

tion fires non-synchronously, a number of units tend to syn-

chronize their spikes, causing the mean activity to present

fluctuations with regular frequency. Conversely, these fluctu-

ations in the order parameters are needed to make the argu-

ment above inapplicable to this case and to provide a

mechanism for synchronization.

In Fig. 6(c), the role that synchronization has in the time

dependence of the mean field variables becomes clear: peri-

odic activity peaks are caused by synchronized firing of a

large fraction of units within a range of excitabilities. In

turn, smaller groups form that synchronize with different

spiking ratios 2:1, 3:1, …, 7:1 (notice that each group has a

different color). This forms what is called a “chimera state.”

Notably, the mean field variables (the order parameters and

mean activities) do not reflect such a nontrivial pattern of

underlying rhythms. Horizontal strips of non-synchronous

spikes form at the critical excitabilities at which the firing

ratios change, and these units fail to lock to the mean field.

The mechanism that synchronizes the different units is the

now time-dependent order parameter in the coupling terms

of Eq. (1).

We conclude that, in this model, synchronized firing is

intimately related to the time dependence of the mean field

variables.

VII. DISCUSSION AND CONCLUSIONS

Most mathematicians and physicists who study brain

functions use empirical models, simple dynamical systems

reflecting one or more important neuro-physiological obser-

vations. One celebrated case is the additive Wilson-Cowan

empirical model of neural networks. This model is based on

the observation that the activity of a neural population

increases non-linearly with its input (with the non-linearity

reflecting the saturating nature of the response). Remarkably,

the simple model that is obtained with coupled excitatory

and inhibitory populations is capable of displaying a rich set

of dynamical solutions.

Recent advances in the study of coupled oscillators

allowed us to obtain equations for variables describing some

aspects of the global behavior of the network. In particular,

equations were derived for the order parameter of a neural

population, describing the degree of synchrony of the solu-

tions. In order to compare a statistical study of a set of cou-

pled oscillators with a phenomenological model as the

Wilson-Cowan neural oscillator, it was necessary to go

beyond the order parameter and derive the equations for the

activity of the network: the average of the actual number of

spikes generated over the whole network, at a given time. In

this work, we performed this calculation and obtained analyt-

ical expressions which could be computed as functions of

the order parameters. Two cases were studied in this work:

the coupling of Adler units (i.e., elements whose dynamics

without coupling were ruled by Adler’s equations) and the

coupling of theta neurons. In both cases, the couplings were

impulsive.

We have found regions of the parameter space where

the dynamics of the order parameters derived for the models

presented here was equivalent to what is observed in the

Wilson-Cowan oscillator. Remarkably, this very simple

model is capable of capturing many of the subtle features

that a population of coupled units displays after computing

its macroscopic behavior from first principles.
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APPENDIX A: ON THE DIVERGENCES IN THE MEAN
ACTIVITY

In this Appendix, we show a method to avoid the diver-

gences in the mean activity (Eq. (17)) occurring for large

values of x by slightly changing the distribution function

gðxÞ. The divergences are due to the slow decay of the

Lorentzian function and the term linear in x in vðx; h; tÞ,
which means that for large x, g � v � x�1, whose integral

diverges. As it has been said in the main text, a similar

behavior but with the opposite sign occurs for large negative

x, which compensates the divergence giving a finite result.

Thus, the divergence would not occur if gðxÞ were a

sharper function. The Ott-Antonsen method contemplates

distribution functions having any number of poles off the

real axis and being analytical everywhere else. In particular,

a slight perturbation of the Lorentzian distribution can be

made by taking gðxÞ to be the product of two Lorentzian

functions with the same x0 but different widths D and D,

i.e.,

g xð Þ ¼ DD Dþ Dð Þ

p x� x0ð Þ2 þ D2
� �

x� x0ð Þ2 þ D2

� � ; (A1)

which has been normalized according to
Ð1
�1 gðxÞdx ¼ 1.

The distribution in Eq. (A1) can be made arbitrarily close to

the Lorentzian (Eq. (12)) by taking D to be sufficiently large,

while at the same time no divergences occur in the integral

in Eq. (17) for any finite D, as now g � v � x�3 for large x.

Although, as we show below, the dynamics of the order
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parameters now becomes 8-dimensional, it is logical to

expect that it will converge to the 4-dimensional one

described in Eq. (14) for sufficiently large D. We will now

make this statement quantitative.

With the new distribution function, all steps in the main

text remain valid until Eq. (13), which, introducing Eq. (A1)

in Eq. (11) and integrating by residues, now becomes

zðtÞ ¼ ð1þ lÞz1ðtÞ � lz2ðtÞ;

where we have defined the two new complex quantities

z1ðtÞ ¼ aðx0 þ iD; tÞ and z2ðtÞ ¼ aðx0 þ iD; tÞ, and the per-

turbation parameter l ¼ D=ðD� DÞ. We also define the

analogous quantities ~z1ðtÞ; ~z2ðtÞ; ~l, etc., for the inhibitory

population. In the limit l! 0, the two distributions Eqs.

(12) and (A1) become identical, and z1ðtÞ ! zðtÞ. In the gen-

eral case, evaluation of Eq. (10) at x ¼ x0 þ iD and x ¼
x0 þ iD for each of the two populations yields the 8-

dimensional mean-field dynamics

_z1 ¼ �Dþ i x0 þ I z; ~zð Þð Þ½ �z1 �
i

2
1þ z2

1

� �
; (A2a)

_~z1 ¼ �~D þ i ~x0 þ ~I z; ~zð Þ
� �h i

~z1 �
i

2
1þ ~z2

1

� �
; (A2b)

_z2 ¼ �Dþ i x0 þ I z; ~zð Þð Þ½ �z2 �
i

2
1þ z2

2

� �
; (A2c)

_~z2 ¼ � ~D þ i ~x0 þ ~I z; ~zð Þ
� �� �

~z2 �
i

2
1þ ~z2

2

� �
; (A2d)

where

Iðz; ~zÞ ¼ kEð1� ð1þ lÞRe z1 þ lRe z2Þ
� kIð1� ð1þ ~lÞRe ~z1 þ ~lRe ~z2Þ;

~Iðz; ~zÞ ¼ ~kEð1� ð1þ lÞRe z1 þ lRe z2Þ
� ~kIð1� ð1þ ~lÞRe ~z1 þ ~lRe ~z2Þ

couple all the equations.

For large D, z1 and ~z1 become the only active degrees of

freedom; departures from the 4-dimensional dynamics Eq.

(14) are represented in the coupling terms with z2, ~z2, of the

form klRez2. These perturbation terms are small not only

because they are weighed by the small parameters l; ~l but

also because z2 and ~z2 are themselves small, as can be seen

by taking the radial component of Eqs. (A2c) and (A2d).

Letting z2 ¼ q2eiw2 , then _q2 ¼ Ref _z2e�iw2g is bounded from

above

_q2 ¼ �Dq2 �
1

2
1� q2

2

� �
sin w2 � �Dq2 þ

1

2
:

Thus, in the stationary regime, q2 � ð2DÞ�1
, as _q2 < 0 for

larger q2, and similarly ~q2 � ð2 ~DÞ�1
. The perturbation terms

are then bounded by jklRez2j � kD=ððD� DÞ2DÞ
� kD=ð2D2Þ. Taking D; ~D 	 1	 D; ~D, all the perturbation

terms quickly become negligible.

APPENDIX B: DIMENSIONAL COLLAPSE FOR
SYMMETRIC PARAMETERS

In this Appendix, we show analytically that z ¼ ~z is a

(two dimensional) invariant, stable manifold in the special

case that the system’s parameters are chosen symmetrically

for both populations. This degenerate election should be con-

sidered as a convenient “attack point” to Eqs. (14), since the

existence of a two dimensional invariant stable manifold

should be robust under variations in the parameters up to

some extent.

We first rewrite Eq. (14) in terms of the new variables

z6 
 ðz 6 ~zÞ=2, which account for the average and the dif-

ference between the two populations’ order parameters, and

evolve according to

_zþ ¼ �Dþ þ i x0þ þ kEþ � kIþð Þ 1� Rezþð Þ � kEþ þ kIþð ÞRez�
� �� �

zþ

þ �D� þ i x0� þ kE� � kI�ð Þ 1� Rezþð Þ � kE� þ kI�ð ÞRez�
� �� �

z� �
i

2
1þ z2

þ þ z2
�

� �
; B1að Þ

_z� ¼ �D� þ i x0� þ kE� � kI�ð Þ 1� Rezþð Þ � kE� þ kI�ð ÞRez�
� �� �

zþ

þ �Dþ þ i x0þ þ kEþ � kIþð Þ 1� Rezþð Þ � kEþ þ kIþð ÞRez�
� �� �

z� � izþz�: B1bð Þ

8>>>>>>><
>>>>>>>:

Here, the parameters have been redefined in an analogous

way: D6 ¼ ðD6~DÞ=2 and so on. The symmetric-parameter

case corresponds to D� ¼ x0� ¼ kE� ¼ kI� ¼ 0, in which

the radial component of Eq. (B1b) reduces to

_q� ¼ ð�Dþ þ ImzþÞq�;

with q� ¼ jz�j. Now, z� ¼ 0 is a solution, which defines the

invariant two dimensional manifold z ¼ ~z. Moreover, it will

be the only long term solution for z� unless Imzþ > Dþ, at

least in some part of its evolution. We continue the argument

by ruling this possibility out: if we set z� ¼ 0, then the radial

part of Eq. (B1a) reads

_qþ ¼ �Dþqþ �
1� q2

þ
2qþ

Imzþ;

which is always negative for Imzþ > 0. Therefore, zþ cannot

have solutions exclusively in the upper plane (in particular,

fixed points). zþ following a bounded 2-dimensional dynam-

ics, the only other possible attractor with Imzþ > Dþ
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somewhere would be a limit cycle that shrunk towards the

origin while in the upper plane and expanded away from it in

the lower. However, this last possibility can also be severely

constrained by noting that, if z� ¼ 0, the evolution Eq. (B1a)

becomes the equation of a single, purely excitatory or inhibi-

tory (depending on the sign of kEþ � kIþ) population, which

hardly can oscillate in the parameter range explored in this

work.16 Therefore, z� ¼ 0 is quite generally a stable invari-

ant manifold for any symmetric choice of the parameters,

with a number of fixed points in the zþ lower plane.

Numerical simulations support this result.

Even if no limit cycles exist on the manifold z ¼ ~z for

the exactly symmetric case, small departures from it in the

parameter space can produce rich two-dimensional behavior

on the (deforming) stable manifold before a higher dimen-

sionality is explored, as seen in Fig. 2. In Fig. 7, we show the

z� component of the trajectories in the z; ~z space (or equiva-

lently, the zþ; z� space), at the same parameter values 1–6 of

the insets of Fig. 2. Comparing both figures, we see that z� is

much smaller than z (and thus than ~z and zþ) in the whole

region. This supports the idea that the two dimensional mani-

fold to which the dynamics collapse is a deformation of the

one defined by z� ¼ 0, which would correspond to the

exactly symmetric case.
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FIG. 7. z� component of the attractor sets for the order parameters of the
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ble fixed points, and closed curves represent limit cycles.
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