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The analysis of thousands of time series in different languages reveals that word usage presents oscillations with
a prevalence of 16-year cycles,mounted on slowly varying trends. These components carry different information:
while similar oscillatory patterns gather semantically relatedwords, similar trends group together keywords rep-
resentative of cultural and historical periods.We interpreted the regular oscillations as cycles of interest and sat-
uration, whose behavior could be captured using a simple mathematical model. Driving the model with the
empirical trends, we were able to explain word frequency traces across multiple languages throughout the last
three centuries. Our results suggest that word frequency usage is poised at dynamical criticality, close to a
Hopf bifurcation which signals the emergence of oscillatory dynamics. Crucially, our model explains the oscilla-
tory synchronization observed within groups of words and provides an interpretation of this phenomenon in
terms of the cultural context driving collective cognition. These findings contribute to unravel howour use of lan-
guage is shaped by the interplay between human cognition and sociocultural forces.
Significance: The frequency with which words are used presents regular oscillations of 16 years.We propose that
these oscillations arise from a basic cognitive mechanism common to other cultural objects with life cycles, such
as fashion. The words that belong to a topic of interest increase their frequency, which is then inhibited by satu-
ration until interest is regained. Here we set up a simplemathematical model for the interaction of this cognitive
mechanism and the sociocultural context, which explains the occurrence frequencies of thousands of words in
different languages during the past three centuries. We show that oscillations are tuned to a critical point and
are synchronized within word communities.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Language is a superstructure in constant evolution at all levels of de-
scription. The cross-fertilization between linguistics and evolutionary
biology has been enhanced by the access to massive digital corpora
that now provide time series of word usage [1,2], opening a new era
for quantitative studies in language dynamics. Joint efforts enabled to
treat language dynamics using methods drawn from population genet-
ics [3], statistical physics [4], and dynamical systems [5]. The study of
these processes suggests that language can be understood as a system
controlled by mechanisms similar to those underlying the evolution of
biological species [6].
bellón 1 Ciudad Universitaria,
Argentina.
Word frequency is controlled by drift and selection [7,8]. Stochastic
drift results from the randomness in the forms that speakers reproduce,
in analogywith genetic variation [9]. On the contrary, selection is the ac-
tive change ofword frequency operated through imitation,memory and
preferential attention to novelty [10,11]. Drift and selection have been
shown to drive certain aspects of language change, including the com-
petition of variants (colour versus colour) or verb regularization (lit ver-
sus lighted). These variants evolved rather smoothly across the last two
centuries, with dynamics relatively independent from the sociocultural
context, and have been successfully fitted by models where imitation
interacts with attention [11,12].

Besides cognitive forces, contextual factors can influence patterns of
language use. In contrast to verb regularization and linguistic competi-
tion, noun usage is strongly associated with specific social and cultural
contexts [10]. The dynamics of noun usage then result from the inter-
play between a largely unpredictable environment and our cognitive

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.112327&domain=pdf
https://doi.org/10.1016/j.chaos.2022.112327
mailto:marcos@df.uba.ar
https://doi.org/10.1016/j.chaos.2022.112327
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/chaos


A. Pardo Pintos, D.E. Shalom, E. Tagliazucchi et al. Chaos, Solitons and Fractals 161 (2022) 112327
functions; however, the nature of this interaction remains to be eluci-
dated.

Previous work has already shown that word frequency evolves as
regular oscillations mounted on slowly varying trends [13]. We capital-
ized on this result by linking regular oscillations to the action of cogni-
tive functions, and the trends to the larger sociocultural context. We
made this operational by setting up a simple Lotka-Volterra model
[14] for collective attention and self-inhibiting saturation, in analogy
with the dynamics of topic consumption in social media [15]. We
show that our model reproduces the empirical time series and reveals
that the system is tuned is to a Hopf bifurcation [16]. This means that
word frequency is poised near the limit between damped and self-
sustained oscillations, which is a signature of dynamical criticality
[17]. A theoretical prediction of our model is the appearance of collec-
tive rhythms [18], of which we found empirical evidence in the partial
synchronization of related words.

2. Results

We collected tokens of themost common nouns in English (10,403),
Spanish (8064), French (6291), German (3341), and Italian (2995) from
theGoogle N-grams2019data [1]. For each noun jwe computed the fre-
quency xj(t) = Nj(t)/N(t), with Nj(t) the counts of the word j and N(t)
the size of the corpus at year t. Frequency time series of the words
time, work and god are shown in Fig. 1a as dots, together with the
trends, i.e. non-cyclic components of the time series computed using
singular spectrum analysis (shown in black). Fig. 1b shows the oscilla-
tory components o(t) = x(t) − tr(t) (blue lines). These spectrally rich
oscillations show a dominance of periods around 16 years across lan-
guages, as revealed bywavelet analysis (Fig. 1c, see SupplementaryMa-
terials).

To investigate the content of the trend and oscillatory components,
we classified the time series of the English corpus using hierarchical
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clustering with linear correlations as a similarity measure. When oscil-
latory components alone were used as input data, communities of se-
mantically related words were formed. We found, for instance, a
cluster formed by military-related words such as force, army, gun, com-
mander, captain, soldier, prisoner and enemy (Fig. 2a); or a cluster related
to medical terms that included the words pain, symptom, inflammation,
anatomy, cough and bandage (Fig. 2b), among many others. Since we
were interested in capturing persistent regularities in the oscillations
along 250 years, new words coined in this period were excluded from
the analysis, as well as those that fell in disuse. Furthermore, not all
nouns remained semantically stable in this period [19]. For instance,
words such as guy and call, which acquired new meanings in the 19th
century, were not associated with any community in this representa-
tion. Conversely, not all the communities represented connected
words; the word gay, that shifted radically in meaning in the 20th cen-
tury, belonged to a large community of rather disconnected words. Al-
though not exhaustive, this description captures the fact that related
stable nouns tend to oscillate together.

A different result is obtained when trend data is used for clustering.
In this case, the groups of words that were formed tended to drift to-
gether tightly across time. For example, a cluster with high trend values
during the early 19th century that decreased afterwards included the
words christian, prayer, darkness, testament and promise (Fig. 2c). An-
other cluster of words with a steep increase in the trends in the last de-
cades collected the words search, context, access, version and monitor
(Fig. 2d), which can all be considered keywords of the present time.
Monitor is another word that changedmeaning around 1930 [20], in co-
incidence with a substantial increase in its frequency of use. Far from
being an obstacle for the detection of trend communities, variations in
the meaning of words can be considered signatures of the sociocultural
changes [8] that characterize these clusters.

These examples suggest that trend clusters reveal keywords specific
to different sociocultural periods rather than semantically related
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Fig. 2.Oscillations and trends carry different information. (a-b)When only oscillations are used for clustering, communities gatherwordswith similar semantic content. Panels correspond
to the trends, oscillations and phase coherence of two oscillation clusters (time series are normalized to simplify the visualization of word frequencies across many orders of magnitude).
(c-d)When only trends are used, clusters are formed that define keywords of sociocultural periods. We show trends, oscillations and phase coherence of two trend clusters. Mean coher-
ence values are indicatedwith blue horizontal lines. (e) Semantic similarity between pairs ofwordswere computed using the fastText algorithm trainedwith theWikipedia. The semantic
similarity of a community was then computed as the average between the all the pairs it contains. The distributions of semantic similarities are significantly different for oscillation and
trend communities, and both are higher than chance level, estimated by shuffling the words across communities.
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words. To quantify this, we used a fastText word embedding model
trained with the Wikipedia corpus. This neural network was trained
to infer words based on their context, thus learning a low dimen-
sional representation of the text from which a measure of semantic
similarity between pairs of words could be computed. In Fig. 2e we
show that the distribution of semantic similarity across communities
was significantly different for trend and oscillation communities (t
(287) = −10.01, p≪10−3). Oscillation clusters grouped words of
higher semantic similarity (mean = 0.22, SD = 0.10) compared to
trend clusters (mean = 0.13, sd = 0.03), and both were higher
than the chance level.

To interpret these results, we propose a deliberately simple model
with global parameters that represent cognitive factors and contextual
3

driving. The model describes two forces acting on the frequency x (see
equations in Methods). A word that belongs to a topic of interest in-
creases its frequency of usage at rate r. This growth is limited by a satu-
ration produced by the sustained consumption of the topic in the past,
with amean delay of τ years.When the expansion of aword is balanced
out by saturation, the frequency of use reaches an equilibrium x ∗. This
equilibrium is stable for short delays τ < 4=r and unstable elsewhere,
as sketched in Fig. 3a. As the average delay is increased over the critical
value τ ¼ 4=r (upper black curve), a stable self-sustained oscillation is
created through a Hopf bifurcation. On the contrary, when the average
delay is decreased and thus the relative importance of the recent past
is increased, oscillations becomemore andmore damped until they dis-
appear at τ ¼ 8=27r (lower black curve). In summary, this low
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Fig. 3.Oscillations are tuned to the Hopf bifurcation and synchronized by contextual forces. (a) Bifurcation diagram of the 3-dimensional system of Eq. (1). The system presents two equi-
libria, x1, 2∗ The origin x1

∗ is a saddle node, and x2
∗ undergoes a Hopf bifurcation at τ ¼ 4=r (upper black line). Oscillations become increasingly damped until they disappear at τ ¼ 8=27r

(lower black line). The dimension not shown is attractive across the parameter space. English nouns fitted by the model are shown as gray points (mean growth rate r= 0.5 ± 0.2 (SD)
years−1 andmean saturation delay τ ¼ 8� 3 (SD) years). (b-c) Examples of individual time seriesfittedwith themodel (red dots in panel a). (d) For different languages,we computed the
distribution of mean coherence 〈ρ〉 across communities for experimental data (Exp), shuffling words across communities (Exp Shuffled), simulating words with the model at constant
trend values (Sim no trend) and simulating words driving the model with the experimental trends (Sim trend). Distributions (Exp) and (Sim Trend) are equivalent.
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dimensional model predicts the appearance of sustained oscillations as
the saturation delay is increased over a threshold.

Word usage undergoes the action of contextual forces that are in-
tractable with low dimensional dynamical systems. Here we assume
that the trend tr(t) represents the resultant of these forces on a word,
which drives the equilibrium frequency x ∗ = tr(t), leaving the growth
rate r and the delay τ as free cognitive parameters to fit the experimen-
tal time traces. In Fig. 3b and c we show examples of word frequency
data (black) successfully reproduced by the model (red). Interestingly,
the fitting parameters were distributed along the Hopf bifurcation,
shown as gray dots in Fig. 3a, presenting a mean imitation rate of r =
0.5 ± 0.2 years−1 and mean saturation delay τ ¼ 8� 3 years.

Fitting the model to empirical data allowed us to build a picture of
word frequencies behaving as near to self-sustained oscillators while
driven by sociocultural forces. Beyond providing a plausible interpreta-
tion for word frequency dynamics, the model yielded a specific predic-
tion: if word usage arises from a mechanism of driven oscillators, then
words with similar drives would partially synchronize their cycles.
Since trend communities are formed precisely by words that share sim-
ilar drives, we expect to observe some degree of synchronization in the
words of these communities. To quantify the collective rhythm of a
community, we computed the phase coherence ρ. When ρ ∼ 0 the oscil-
lators have random phases, while ρ = 1 means that the oscillators are
collectively in phase. This happens, for example, when the maxima or
the minima of all the oscillations coincide at the same time, and thus
the cluster is completely synchronized.

Typical traces of ρ(t) for trend clusters are shown in the lower panels
of Fig. 2c and d, along with the mean coherence values 〈ρ〉 marked by
blue horizontal lines. These non-zero coherence values may indicate
an effect of finite size; in fact, small communities of unforced oscillators
show some degree of coherence [18]. To investigate this possibility, we
first computed the distribution of mean coherence values across com-
munities for different languages (Fig. 3d Exp). Then we shuffled the
words between communities and recomputed the coherence, obtaining
much lower values (Fig. 3d Exp Shuffled). This supports that oscillations
are indeed partially synchronized within the communities (for further
testing, see Methods).

To explore the sources of this coherence within the framework of
our model, we simulated every community integrating our model
with parameters r, τð Þ distributed near the Hopf bifurcation and with
random initial conditions. When simulations were performed using
4

constant trend values, the coherence levels were similar to those of
the shuffled population (Fig. 3d Sim no trend). Instead, when equations
were driven by the empirical trends, the coherence increased (Fig. 3d
Sim trend) to the levels observed experimentally in all the tested lan-
guages. This shows that the trends act as a driving that contributes to
synchronize the word frequencies, providing the empirically observed
coherence values between words within communities.
3. Discussion

The analysis of thousands of time series corresponding to different
languages revealed that word frequencies present spectrally rich con-
tent, with a dominance of 16-year oscillations. We propose that these
regular oscillations arise from a mechanism common to the life cycles
of many cultural objects [21,22], which is particularly apparent in the
periodic comebacks of fashion styles. In language, cycles are character-
ized by a growth in the frequency of words that form a topic of interest,
which is then inhibited by saturation until interest is regained.Wemade
this mechanism operational with a simple model that increases word
frequency of use due to attention and decreases it by saturation. Of
course, attention is associated with topics rather than individual
words. However, topical fluctuations explain a significant amount of
variability in the change of individual word frequencies [8,10], which
we used as variables in our model.

The model is completed by driving this cognitive-based mechanism
with the empirical trends, which we associated with the specifics of so-
ciocultural contexts. This context represents economic events, natural
disasters and wars [13] but also subjective factors as life-styles and
well-being [23], as well as other attractors of collective interest that
alter word frequency.

Some caution is needed regarding the treatment of cognitive and so-
ciocultural forces as distinct from one another. This separation is not
straightforward, as sociocultural forces affect cognitive processes, par-
ticularly the ones related to attention. This is indeed the case for the
consumption of popular content that exhausts the attention resources
more and more rapidly over time [15]. In our model, this relation be-
tween cognition and culture could be accounted by the use of time-
dependent parameters. However, here we kept the simplest model ca-
pable of explaining the strong regularities in word usage across centu-
ries in different languages.
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As simple as it is, the model allowed us to reproduce global features
of word use traces. Parameter fitting indicated that themaximum influ-
ence on the growth rate response is due to the consumption of the
words 5–11 years in the past. This can be seen as a timescale related
to ‘social interest’, much in the same way that Michel and collaborators
[1] analyzed the decreasing levels of interest in events of the past and
showed that, in recent years, interest decline to half of the initial level
after only 10 years.

Beyond the cognitive factors that regulate word cycles, a number of
cultural and biological forces are involved in language change at differ-
ent levels, such as individual learning [7,24,25], changes in vocal anat-
omy [26] and adaptations that decrease the effort of language
production and understanding [27,28], among others. Decreased effort
refers to the optimization of the trade-off between accurate and effi-
cient communication, which has been put forward as a possible expla-
nation of Zipf's law [29]. This empirical law states that the frequencies
of the words used in any text are ordered in terms of a universal
power law as a function of their rank [30], a signature of statistical crit-
icality. Interestingly, we found that word frequencies are auto-
organized in a narrow band around the Hopf bifurcation, close to the
limit between damped and self-sustained oscillations. This tuning to a
Hopf bifurcation is a signature of dynamical criticality that has been ob-
served in biological systems [31]. Except for a few cases, themathemat-
ical treatment used to describe criticality in statistical systems is quite
different from the one used for dynamical systems [17]. Since language
is dynamical by nature, we believe that this finding could provide a clue
to address possible relationship between statistical and dynamical no-
tions of criticality in word frequency time series.

We have described the global dynamics of word usage in different
languages using a basic attention-saturation mechanism that pro-
duces cycles. Beyond providing a plausible interpretation of word
frequency data, we believe that the model raises two interesting the-
oretical implications. First, the notion of dynamical criticality in
word frequency time series, and its possible relationship with uni-
versal aspects of language. Second, the dynamical structure of forced
oscillations predicts the appearance of partial synchronization,
which is indeed observed in communities formed with words of sim-
ilar trends. We expect that these findings will open an avenue in the
investigation of language dynamics and contribute to unravel how
human cognition and sociocultural forces interact to shape our use
of language.

4. Materials and methods

4.1. Corpus and data processing

Occurrence frequencies xj(t) = Nj(t)/N(t) were computed using the
countsNj(t) of the word j and the number ofwords in the corpusN(t) at
each year t. We used singular spectral analysis (SSA) [32] to extract
cyclic and non-cyclic components from the time series x(t). Trends tr
(t) were computed using the non-cyclic components of each word
using the Matlab function autotrend [33].

The Google Books is a massive corpus of lexical data extracted from
~8 million books (6 % of all books ever published) that has been widely
used for research. Despite of its size, is not free from biases [34], which
we addressed as follows:

• Uneven topic representation. An unbalance in the sampling of topics
has been reported for the English corpus of the Google Books 2012
[34]. Following the suggestions in [35], we performed our analyses
on different language corpora. Nouns were extracted from the latest
Google 1-g 2019 database, and converted to singular form [36]. To in-
crease the statistical power, we kept nouns present every year and at
least 106 times within the interval 1750–2000. This left us with a core
vocabulary of 10,403 English, 8064 Spanish, 6291 French, 3341 Ger-
man, and 2995 Italian nouns.
5

• Random sampling. To avoid random sampling effects in the database
loading [8], the oscillatory components oj(t) = xj(t) − trj(t) were
low-pass filtered, keeping the frequencies f < 1/6 years−1. The ratio-
nale behind this is supplied in the Supplementary Materials, and we
illustrate it here with an example. Consider for instance the amount
of religious books loaded to the database in successive years. If this
number varies from one year to the other, religious words that appear
together in those books will present time traces highly correlated in
the frequency of the database loading, f ∼ 1 year−1. To avoid this
bias, high frequencieswere removed by low-passfiltering the time se-
ries (Fig. 1a and b).

4.2. Clustering

We computed the hierarchical cluster tree using linear correlations
as a similarity measure using the MATLAB function linkage on the fre-
quencies x(t), trends tr(t) and oscillations o(t) = x(t) − tr(t) across
the period (1750–2000). Clusters from x(t) and tr(t) produce virtually
the same word groups. The cutoff levels were set to 0.04 for trends
and 0.5 for oscillations; these values are the lowest possible that ensure
maximumcorrelation between series compatiblewith a cluster size dis-
tribution that follows the Zipf's law. Communities of less than 10 words
were discarded. Codes are supplied to reproduce the complete set of
trend and oscillation clusters.

4.3. Semantic similarity

The fastTextmodel trainedwith the EnglishWikipedia databasewas
used to estimate the mean semantic similarity within each community
[37]. Semantic similarity is higher for oscillation clusters than for trend
clusters (oscillations: mean = 0.22, SD = 0.10; trends: mean = 0.13,
SD=0.03; t(287)=−10.015, p<10−19). Chance levelswere computed
by shuffling the words across all communities. Semantic similarity of
both types of clusters is significantly higher than chance (oscillations:
t(226) = 11.1026, p<10−22; trends: t(384) = 12.4769, p<10−29).

4.4. Model

The single species model reads x
:

tð Þ ¼ rx tð Þ, where x(t) represents
the unit density of population at time t, and r > 0 is the intrinsic rate
of growth for population [38]. Considering the competition for finite re-
sources, the equation becomes x

:
tð Þ ¼ rx tð Þ 1 � x tð Þ=x∗½ �, where x ∗>0 is

the non-zero equilibriumpopulation.When time delay becomes impor-
tant, the system is governed by x

:
tð Þ ¼ rx tð Þ 1 � x t � τð Þ=x∗½ �. Here we

used

x
:

tð Þ ¼ rx tð Þ 1 � 1
x∗

Z t

� ∞
G t � τð Þx τð Þdτ

� �
, ð1Þ

where G(t), called the delay kernel, is a weighting factor that indi-
cates howmuch emphasis should be given to the frequency x at earlier
times to determine its effect in the present. Here we used the strong

kernel G τð Þ ¼ 4τ=τ2 e � 2τ=τ , which increases from zero to a maximum
at τ=2 and then decays exponentially. This functional form assumes that
there is a preferential delay for the influence of the past,with an average
of τ ¼ R ∞

0 uG uð Þ du.

Defining the integrals y tð Þ ¼ 2=τ
R t

� ∞e
� 2 t � sð Þ=τx sð Þds and

z tð Þ ¼ 4=τ2
R t

� ∞ t � sð Þe � 2 t � sð Þ=τx sð Þds, and applying the chain rule
[14], Eq. (1) can be further reduced to the system

x
:¼ rx 1 � z=x∗½ �
y
:¼ 2=τ x � yð Þ
z
:¼ 2=τ y � zð Þ:

8><
>: ð2Þ



Table 1
Two-sample t-test for comparing coherence levels between experimental data and simulations (see Fig. 3d).

Exp vs
Exp shuffled

Exp vs
Sim no trend

Exp vs
Sim trend

English t(378) = 17.001,
p<10−20

t(378) = 19.730,
p<10−20

t(378) = 0.086,
p > 0.05

Spanish t(219) = 14.562,
p<10−20

t(219) = 15.883,
p<10−20

t(219) = 1.853,
p > 0.05

French t(146) = 12.717,
p<10−20

t(146) = 11.975,
p<10−20

t(146) = 0.737,
p > 0.05

German t(60) = 8.702,
p<10−12

t(60) = 7.107,
p<10−9

t(60) = 0.483,
p > 0.05

Italian t(58) = 11.567,
p<10−16

t(58) = 10.272,
p<10−14

t(58) = 1.350,
p > 0.05
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Eq. (2) have two equilibria, a saddle node at the origin x1
∗ = 0, and

another at x2∗ = x ∗. Linearization at this non-zero equilibrium gives

the characteristic equation λ3 þ 4=τλ2 þ 4=τ2λþ 4r=τ2 ¼ 0. When
τ < 4=r, all three roots of the characteristic equation have negative
real part and the equilibrium x ∗ is stable; at τ ¼ 4=r, the characteristic
equation has a negative real root λ1 = − r and a pair of purely
imaginary roots λ2, 3=± ir/2=, giving rise to self-sustained oscillations
of frequencyω= r/2 through aHopf bifurcation shown in Fig. 3a (upper
black curve). As the average delay is increased over the critical value
τ ¼ 4=r, a stable periodic solution is created. When on the contrary
the average delay is decreased, making the recent past more important,
oscillations become more and more damped until they disappear at
τ ¼ 8

27r, where the three roots of the characteristic equation are real
(lower black curve in Fig. 3a). In summary, the Lotka-Volterra system
with strong kernel is a low dimensional model that predicts the appear-
ance of sustained oscillations as the saturation delay is increased over a
threshold.

4.5. Numerical integration and parameter fitting

Our model was used to simulate individual words xm(t) by
integration of Eq. (2) driven by the experimental trends x ∗ = tr(t),
and initial conditions (x0,y0,z0) = (tr(1750), tr(1750), tr(1750)). We
ran the model for every point in the grid 0.2 ≤ r ≤ 1 (δr = 0.01) and
1 ≤ τ ≤ 12 (δτ ¼ 0:1) of Fig. 3a and selected the simulation
minimizing the objective function zscore(log(1 − corrosc)) + zscore
(log(D)), a mixture of the total difference D = [∫[xm(t) − xe(t)]2dt]1/2

and the correlation between the oscillations oe(t) and om(t).
Fitting of individual words involves comparing experimental traces

xe(t) of slightly variable frequency with simulations xm(t) of fixed
frequency. Due to the difficulty of constructing accurate similarity
measures between such traces, we selected the 996 words for which
the oscillations of simulations and experimental traces have similar
amplitude: 3/4SD(oe(t)) < SD(om(t)) < 5/4SD(oe(t)).

4.6. Phase coherence

We transformed the oscillatory components oj(t) to phase variables
θj(t) using the Hilbert transform [39]. The collective rhythm of a
community was computed with the order parameter ρeiψ = ∑j=1

N eθj/
N, summing over the N words that form the community. This complex
number quantifies the collective rhythm produced by the population
of words within a community, where ρ(t) measures the phase
coherence and ψ(t) the phase average of a community.

Fig. 3d shows the distribution of the mean coherence values 〈ρ〉
across communities for the following conditions: 1. the experimental
communities (Exp), 2. shuffling words between communities (Exp
Shuffle), 3. Simulations ofword communities using themodelwith con-
stant trend values (Sim no trend), 4. Simulations of word communities
driving themodelwith the experimental trends (Sim trend). Coherence
6

values are normally distributed (Kolmogorov-Smirnov test: p> 0.05 for
all languages and conditions). A two-sample t-test (Table 1) shows that
only the experimental (Exp) and simulatedwith trends (Sim trend) dis-
tributions are equivalent across languages.

Data and code availability

All the datasets are publicly available at http://storage.googleapis.
com/books/ngrams/books/datasetsv2. The codes and processed data
used to generate the figures of this work and the word communities
are available in matlab at https://github.com/AlePardoPintos/
Cognitive-forces-words
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