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a b s t r a c t 

Time series forecasting has historically been a key research problem in science and engineering. In recent 

years, machine learning algorithms have proven to be a very successful data-driven approach in this 

area. In particular, Recurrent Neural Networks (RNNs) represent the state-of-the-art algorithms in many 

sequential tasks. In this paper we train Long Short Term Memory networks (LSTM), which are a type 

of RNNs, to make predictions in time series corresponding to the observation of a single variable of a 

chaotic system. We show that, under certain conditions, networks learn to generate an embedding of the 

data in their inner sate that is topologically equivalent to the original strange attractor. Remarkably, this 

resembles standard forecasting methods from nonlinear science in which the time series is embedded in 

a multi-valued space using Takens’s delay embedding mechanism. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Time series modeling is a key area of scientific research. Fore- 

asting the future state of a given sequence is a critical part of real-

orld problems in a wide range of areas: from climate and biology 

o traffic and finance [1–5] . 

In many applications time series come from systems whose 

ariables obey a set of differential equations. This is often the 

ase in physics and engineering. To fully describe these systems, it 

ould be ideal to find the governing set of equations, but we are 

sually unable to do that. This may be because we do not know 

he underlying mechanisms of interaction, or because we have no 

ccess to measure all the variables characterizing the system un- 

er study. In either case, we have to use some kind of data-driven 

pproach to model the time series data. 

During the 80 s and 90 s dynamicists developed a series of tools 

o characterize and forecast time series from dynamical systems 

6–13] . These methods proved particularly well suited for time 

eries coming from non-linear and chaotic systems, which were 

roblematic for classical statistical approaches. The core idea be- 

ind many of these methods is to first make an embedding of the 

ime series and then study the system in this new representation. 

n embedding is a multi-valued sequence of points which could be 

apped into the original flow of the dynamical system by means 

f a smooth and invertible change of coordinates, i.e. is topologi- 

ally equivalent to it. Making this reconstruction of the flow was 

ossible by means of the Takens ′ s theorem [ 14 , 15 ]. Recently, it has
∗ Corresponding author at: IFIBA, CONICET and Departamento de Física, FCEyN, 
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een shown that autoencoders, a type of dimensionality reduction 

lgorithm, can also be used to find proper embeddings for chaotic 

ime series [ 16 , 17 ]. 

Suppose we have a time series data { x 1 , x 2 , . . . , x N } gener- 

ted by regularly inspecting the value of a variable in a dy- 

amical system with a sampling interval τ . The central hypoth- 

sis behind Taken’s theorem is that the number of elements 

eeded to determine the future of the series, N 1 , is smaller 

han the total number of elements in the series, N 1 � N. That 

eans that the information contained in a segment of the se- 

ies { x k, x k +1 , . . . , x N 1 + k −1 } is enough to determine the follow- 

ng segment { x k +1 , x k +1 , . . . , x N 1 + k } . In this way, we can repre- 

ent the points { x i } in the time series by points in R N 1 . This pro-

ess generates an embedded manifold, a submanifold of R N 1 to 

hich the time series will be restricted. Takens ′ s theorem states 

hat, if the manifold holding the flow is of dimension d, a sub-set 

f N 1 ≥ 2 d + 1 points are sufficient to generate an embedding. But 

his embedding is not optimal or unique. In most cases a lower 

alue of N 1 can lead to a correct embedding if the time lag be- 

ween the points, τ , is adequate [8] . Notice that in real world ap-

lications where the times series data is noisy, if the value of τ is 

ot large enough, the variation of the signal will be dominated by 

oise and the embedding will fail to spam a good representation 

f the data, even when N 1 = 2 d + 1 . 

Nowadays, due to the increasingly availability of computing 

ower and data, data-driven modeling is dominated by machine 

earning algorithms, in particular neural networks [ 18 , 19 ]. These 

black-box” models are used to make predictions in all kinds of 

ime series, without differentiating their nature [20–24] . Out of 

he different types of networks available, LSTM (Long Short-Term 

emory) is one of the most successful for working with time se- 

https://doi.org/10.1016/j.chaos.2021.111612
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Fig. 1. a) Diagram of an LSTM cell. gray boxes indicate a neural layer, while orange circles indicate pointwise operations. The hidden state, h, and the cell state, c, carry 

information from one step of the network to the next. b) Diagram of sequence to sequence architecture. The input cell (encoder) reads and encodes the input sequence into 

a state vector h̄ in , this vector is then passed to the output cell (decoder) to produce predictions. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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ies [25–28] . As a Recurrent Network, it is designed to capture 

emporal correlations of an input signal by sequentially processing 

ts elements. At each step, the network reads one element of the 

eries, the input value x t , and updates its inner states to new val- 

es, h̄ t and c̄ t (See Fig. 1 a). Each input value x t can be a scalar or a 

ector depending on the problem data, while the dimension of the 

nner states is an important hyperparameter to choose. LSTMs are 

sed to build sequence to sequence architectures, which represent 

he state-of-the-art approach in many sequential tasks [29–36] . In 

his kind of architecture, an input LSTM cell (aka encoder) reads 

nd encodes the input sequence into a state vector, h̄ in , this vector 

s then passed to the output LSTM cell (aka decoder) to produce 

redictions (See Fig. 1 b). 

In recent years, an increasing number of studies have inves- 

igated the predictive power of recurrent neural networks when 

rained to predict time series coming from dynamical systems, 

howing the capability of this type of networks to capture com- 

lex nonlinear dynamics. In [ 28 , 37 , 38 ] and [39] the authors in-

estigated the long-term performance of LSTMs on nonlinear sys- 

ems by evaluating the accuracy and stochastic characteristics of 

he predicted signal. In [40] the authors tested LSTMs predictions 

utside the state space used for training by exploring dynamical 

roperties of the solutions such as bifurcations and characteristic 

xponents. In [ 41 , 42 ] and [43] authors compare the performance 

f different types of architectures (MLPs, RNNs, LSTMs and GRUs) 

n predicting systems with nonlinear dynamics. 

In this work, we train LSTM networks in a sequence to se- 

uence architecture to perform the task of predicting chaotic time 

eries generated from a Rössler system. We choose to work with a 

haotic system because, even when the system is low-dimensional, 

he generated time series never repeats itself and the task of pre- 

icting its future state is highly not trivial. We analyze the encod- 

ng of the signal made by the LSTM cell in the hidden space, h̄ in ,

nd check whether the reconstructed flow in this multi-valued en- 

ironment is equivalent to that of the original dynamical system. 

o determine this equivalence, we inspect the topological organiza- 

ion of the unstable orbits coexisting with the chaotic attractor by 

eans of the Linking Numbers (See subSection 2.3 Linking Num- 

ers). Then, we will compute the topological organization of the 

ame segments in the hidden space representation. We will inter- 

ret the match between the topological organization of the repre- 
2 
ented segments and the actual orbits as a signature of equivalence 

etween the original and the reconstructed flows. Notice that our 

nalysis differs from previous work on the topic in one key aspect: 

nstead of focusing on analyzing the predicted signal, we investi- 

ate the internal representation of the data made by the recurrent 

etwork. 

We show that, under certain conditions, these networks gen- 

rate a topologically correct embedding of the time series in the 

idden space of the input LSTM cell. Remarkably, this result sug- 

ests that the process learned by the recurrent neural network to 

ake predictions resembles the standard forecasting methods de- 

eloped by the dynamicists, in which the time series is embedded 

n a multi-valued space to be studied. We also discuss the condi- 

ions needed for this to happen and how knowing that the flow in 

he hidden space is equivalent to the original can help to interpret 

he forecasting process learned by recurrent neural networks. 

The work is organized as follows. In the second section, we 

escribe the dataset generation process, the architecture of the 

rained networks and the topological indeces that we use to com- 

are flows. The third section, Results, presents the results obtained 

or two different training scenarios and analyses the conditions un- 

er which the flow in the hidden space turns out to be an ade- 

uate embedding of the training data. In the final section, Discus- 

ion, we discuss the implications of our finding in the context of 

n ongoing expansion of the use of neural networks in data-driven 

rediction of time series. 

. Methods 

.1. Dataset 

The first step to generate our dataset was to integrate a Rössler 

ystem, 

dx 

dt 
= −y − z 

dy 

dt 
= x + a y 

dz = b + z ( x − c ) 
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Fig. 2. Embeddings generated by LSTMs networks. a) We simulated a strange attractor using a Rössler dynamical system. b) Time series made from values of the x variable 

were used to train the neural network: for each training instance, L consecutive points { x i −L, . . . , x i } were used as input and the following L consecutive points { x i −L +1 , . . . , x i +1 } 
as the desire output. c) The architecture of our network. One input LSTM cell reads the input data and generates the embedding, then an output LSTM cell connected to a 

dense layer constituted by one single output neuron generates the forecast. The cost function being minimized is the Mean Square Error between this output and the actual 

data. d) Example of a reconstructed attractor in the Hidden Space. 
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ith a = b = 0 . 1 and c = 14 using a fourth order Runge-Kutta

ethod. The time series corresponds to the scalar value of the 

 variable, sampled every τ = 0 . 08 time units (see Fig. 2 a). To sim-

late more realistic data and add robustness to the results, we 

dded noise to the time series in the training process. The added 

oise was Gaussian white noise, with zero mean, and a standard 

eviation equivalent to 2% of the standard deviation of x (different 

or each trained model). 

In order to train the network, we partitioned the time series in 

egments of L = 32 points : { x 1 , x 2 , . . . , x 32 } , { x 2 , x 3 , . . . , x 33 } , . . .
3 
 Each of these segments include data corresponding to a time span 

f approximately half the duration of the period-1 orbit of the at- 

ractor. We then took pairs of subsequent segments: the first to 

e used as the network input, x̄ ∈ R 

32 , and the second one as the 

esire output, ȳ ∈ R 

32 (see Fig. 2 b). Given the dimensionality of 

he attractor, Takens ′ s theorem guarantees that each of these seg- 

ents has enough information to unequivocally represent a partic- 

lar state of the system. 

The result of this process was 62,461 pairs of ( ̄x , ̄y ) elements, 

he input and target datasets ( ̄X , ̄Y ) . Finally, a train-test split was 
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erformed on the data. We use the data from the first 80% of the 

ime series to train the network, and the data from the last 20% to 

est it. 

.2. Neural networks 

The “unrolled” architecture of our sequence to sequence net- 

ork is shown in figure (see Fig. 2 c). The input LSTM cell reads the

2 elements of one input sequence, x̄ i ∈ R 

32 , and generates an en- 

oding, h̄ i ∈ R 

H , which is equal to the last value of its hidden state. 

hen an output LSTM cell receives this state and sequentially gen- 

rates 32 hidden states. These states are read by an output neu- 

on (indicated as Dense in see Fig. 2 c) that transform each of this

tates into a one-dimensional value, generating the predicted out- 

ut ȳ 
pred 
i 

∈ R 

32 . 

We choose the dimension of the hidden state, H, in both LSTM 

ells to be 3. This is the optimal dimension to generate a proper 

mbedding and allow us to use a topological index called Linking 

umber to study the encoding. We used hyperbolic tangent as ac- 

ivation function for both LSTMs cells and linear activation for the 

euron at the output. 

To implement the neural networks, we used Keras 2.3.1 with 

ensorflow 1.15.2 as backend. The loss function minimized during 

he training was the Mean Square Error (MSE) between the desire 

utput ȳ and the network exit ȳ pred . We used the Adam algorithm 

s optimizer, with learning rate lr = 0 . 001 and exponential decay 

ates β1 = 0 . 9 and β2 = 0 . 999 [44] . A batch size of 64 was used

nd the models were trained for 201 epochs. A systematic and ex- 

austive search in the hyperparameter space was not performed to 

inimize the MSE in the test set. 

.3. Linking number 

A strange attractor is a non-trivial invariant subset of the phase 

pace of a dynamical system towards which a set of initial condi- 

ions is attracted. The topology of a strange attractor can be pre- 

isely quantified by studying the unstable periodic orbits coexisting 

ith it [45] . If the attractor is three-dimensional, the organization 

f the orbits can be characterized by how they are knotted, and 

ow they wind around each other. This topological feature is de- 

cribed by a numerical invariant called the Linking Number. 

We use the Linking Numbers between the periodic orbits as 

 way to unequivocally determine whether the reconstructed at- 

ractor in the hidden space was equivalent to the original. We de- 

eloped a function in Python to compute the Linking Number be- 

ween two oriented curves in three dimensions, the source code is 

vailable on a public repository [ 16 , 46 ]. 

In order to compare it with the encoding performed by the 

ecurrent networks, we need to compute the characteristic Link- 

ng Numbers between a set of periodic orbits in the Rössler at- 

ractor. Ideally, one should compute the topological organization of 

ll the orbits, but it has been shown that low period orbits carry 

he information necessary to constrain the template organizing the 

omplete flow [ 9 , 45 ]. To that end, we identified segments which

ere good approximations of three low period unstable periodic 

rbits. These orbits coexist with the chaotic solution obtained in 

he numerical simulations of our dynamical system (see Fig. 3 a). 

hen, we calculated the Linking Numbers between these approxi- 

ations of the orbits numerically, obtaining: Linking ( P 1 , P 2 ) = −1 , 

inking ( P 1 , P 3 ) = −1 , Linking ( P 2 , P 3 ) = −2 . We refer as P 1 to the

eriod-1 solution, P 2 to the period-2 solution, and P 3 to one of the

wo period-3 solutions in the Rössler attractor. 
4 
. Results 

.1. Predicting the following segment 

First, we trained 70 sequence-to-sequence models according to 

he process described in the previous section. Note that, despite 

ollowing the same procedure, each training process is different 

ue its stochastic nature (initialization of parameters, noise gen- 

ration and shuffling of the training set). In Fig. 3 c we present 

he result of the training process for 201 epochs. In red and blue, 

volution of the Mean Square Error during the training for test 

nd training sets; lines indicate the median and shadows the In- 

erquartile Range. Upon completion of the training process, the 

ean Square Error of training and test sets have reached a plateau 

or most models. 

In order to study the encoding of the time series made by the 

STM network, we took the activation of the hidden neurons in the 

ast step of the input LSTM, h 1 
i 
, h 2 

i 
and h 3 

i 
, as a multi-valued envi- 

onment. In Fig. 2 d we display the flow generated by the training 

et in this multi-valued environment for one of the networks after 

ompetition of the training process. We evaluated the topological 

rganization of the orbits in the hidden space by computing the 

inking numbers of the periodic orbits in this new representation. 

n Fig. 3 b, we display the reconstruction for the three segments 

pproximating the periodic solutions. In the case we used as ex- 

mple, the network training results in a correct embedding: the 

opological organization of the periodic orbits in the hidden space 

s identical to that of the original orbits ( Fig. 3 a). 

We examined the topological structure of the orbits in the hid- 

en space of all the trained models at different epochs during the 

raining process and compute the proportion of the models with 

ows equivalent to that of the original attractor. The percentage of 

odels with correct topology as a function of training epoch is dis- 

layed in Fig. 3 c. Notice how the number of models with correct 

opologies increases as the networks learn to make better predic- 

ions and the MSE between the predicted and the real target seg- 

ent decreases. After the first epoch, only 11% of the models lead 

o the right topological organization, whereas after 201 epochs 94% 

f them do. 

The 6% of models with wrong topology were models that did 

ot reach a good minimum of the cost function during training 

hase. There is a significant difference between the Mean Squared 

rror of the test set in these models, 4 . 94 ( 4 . 25 − 5 . 21 ) × 10 −4 , and

he ones with correct topology, 1 . 59( 1 . 29 − 2 . 12 ) × 10 −4 . Values 

re presented as median (interquartile range). 

In this first numerical experiment, the recurrent networks 

ere trained with the objective of, given an input seg- 

ent { x i −L, . . . , x i } , having to predict the following segment 

 x i −L +1 , . . . , x i +1 } , with L = 32 . It is remarkable that, in order to

chieve this, the LSTM generates an encoding in the hidden space 

hat is topologically equivalent to the original attractor. In the text 

elow, we discuss the reasons and conditions for this to happen. 

In light of Takens ′ s theorem, we know that both the input and 

arget data, ( ̄X , ̄Y ) , lay on manifolds which are embeddings of the 

riginal Rössler Attractor in R 

L . Let’s call M in ⊂ R 

32 and M out ⊂
 

32 to the input and target manifolds. So, our objective function, 

, is a one-to-one mapping from points on M in to points on M out , 

.e. F : M in → M out . By training our model, f θ , we are trying to 

nd a set of parameters, θ ∗, so that our recurrent neural network 

s a good approximation of our objective function F in terms of the 

ean Squared Error. But our network has an important constrain: 

he information about the input has to be carried by the hidden 

tate h̄ ∈ R 

H . So, for f θ be able to do a one-to-one mapping from 

 in to M out , H has to be equal or bigger than the dimension of 

he original attractor. In our case, H = 3 is the optimal integer to 

ulfill this condition. 
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Fig. 3. Results. a) Comparison between the original attractor, and one reconstructed in the hidden space. We display the approximations of the periodic orbits in the 

original flow, and in the reconstructed one. In this example, both for the original and the reconstructed attractors, these orbits present linking numbers: Linking ( P 1 , P 2 ) = 

−1 , Linking ( P 1 , P 3 ) = −1 and Linking ( P 2 , P 3 ) = −2 . b) Result of the training process for 70 models. In red and blue, evolution of the Mean Square Error during the training 

for test and training sets, lines indicate the median and shadows the Interquartile Range. In green, we show the percentage of models whose topological organization of the 

unstable orbits in hidden space is the same as that of the original attractor. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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If the network f θ is a good approximation of the objective func- 

ion F , it will also generate a one-to-one mapping between the 

nput and the target data, M in and M out . This means that, if f θ
s complex enough and properly trained, it will ensure a bijec- 

ion between M in and the representation of the data in the hidden 

pace, M h , which acts as a bottleneck for the information flowing 

rom the input to the output. This bijection is the key condition 

eeded for the encoding made by the LSTM to be an embedding 

f the original attractor. 

Attractors can also be characterized by the Maximal Lyapunov 

xponent (MLE), a quantity that measures the rate of separation of 

nfinitesimally close trajectories and is related to the notion of pre- 

ictability for a dynamical system [47] . As an additional analysis, 

e computed the MLE for the original Rössler attractor, L = 0.074, 

nd for the reconstructed attractors in the hidden space. We found 

 = 0.074 (0.072–0.077) for models where training led to a correct 

opology and L = 0.084 (0.081–0.087) for models where the train- 

ng led to wrong topologies. We can then state that the models 
b

5 
hat reached a good minimum during training present a value for 

he largest Lyapunov exponent close to the one computed for the 

riginal attractor. However, this subject requires further investiga- 

ion. Future work can explore different metric properties, such as 

he fractal dimension and the relative metric entropy, on attractors 

ith different parameter values and noise levels [48–50] . 

.2. Predicting N steps ahead 

It is interesting to explore what happen when, instead of pre- 

icting the following segment, we train a sequence to sequence 

ecurrent network to predict certain number of steps ahead in the 

ime series. This is a conventional task these kind of networks are 

rained to achieve. 

We used the exact same network and training scheme as in 

he previous section, but this time for each input segment x̄ i of 

 = 32 points, { x i −L, . . . , x i } , the target output ȳ i was composed 

y the following N points in the time series, { x i +1 , . . . , x i + N } . We 
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Fig. 4. Results of LSTM sequence-to-sequence models trained to predict 1, 2, 3 and 6 steps ahead, 50 networks were trained for each value. a) The percentage of models 

whose topological organization of the unstable orbits in hidden space is the same as that of the original attractor at the end of the training process. b) Mean Square Error 

of the prediction for training and test sets. 

e

1

u

d

a

p

s  

r

B

c  

r

E

N

i

t

c

m

w

1

o

t

t

s

v

e

a

m

R  

k

p

m

i

i

m

i

t

4

d

e

c

f

t

t

t

p

a

u

s

N

a

t

t

t

w

t

b

c

w

s  

p

e

d

t

t

n

xplored different number of steps ahead in the prediction, N = 

 , 2 , 3 and 6 . We trained 50 models for each of these values. 

In the same way that we did in the previous section, we eval- 

ated the topological structure of the periodic orbits in the hid- 

en space for all the trained models. We computed the percent- 

ge of models with correct organizations at the end of the training 

rocess for the different numbers of N explored. The results are 

hown in Fig. 4 a. For N = 1, only 64% of the models present a cor-

ect topological organization in the hidden space after 201 epochs. 

ut this proportion increases when the numbers of steps ahead in- 

reases. For N = 3 and N = 6, the percentage of models with cor-

ect topology reaches 95%. In Fig. 4 b we present the Mean Squared 

rror in the test and train sets for the different values of N used. 

otice that the task of predicting further steps becomes increas- 

ngly difficult to accomplish for the neural network. 

If we compare the Mean Squared Error in the test set between 

he models with wrong topology with that of the models with 

orrect topology for N = 1, there is no significant difference. For 

odels with wrong topology the MSE is 5 . 57 ( 5 . 45 − 6 . 06 ) × 10 −5 , 

hile for models with correct topology is 5 . 64 ( 5 . 41 − 6 . 40 ) ×
0 −5 . This means that even models that reached a good minimum 

f the cost function during the training phase end up with wrong 

opologies. 

Unlike in the case described in the previous section, in this case 

he points in the target dataset Ȳ do not unequivocally define a 

tate of the system for all cases. Depending on the choice for the 

alue of N, the target manifold M out ⊂ R 

N may or may not be an 

mbedding of the original attractor. Let’s analyze the cases N = 1 

nd N = 2. We know that, because of its dimension, the target 

anifold M out ⊂ R 

N cannot be a homeomorphism of the original 

össler attractor for N = 1 or N = 2. For the same reason, we also

now that the function F it is not a one-to-one mapping between 

oints of M in and points on M out . Thus, for these values of N, a 

odel f θ that is a good approximation of F does not necessarily 

mply a bijection between M in and the representation of the data 

n the hidden space M h . This is why an important proportion of 

odels end up with an incorrect organization of the periodic orbits 
6 
n the hidden space, regardless of how well they are accomplishing 

he desire task. 

. Discussion 

In the context of a growing use of neural networks as data- 

riven models in a wide variety of fields, our work adds to the 

ffort s of interpreting the prediction mechanisms behind their suc- 

ess. In particular, we show that, if the time series data comes 

rom a dynamical system, a recurrent neural network in sequence- 

o-sequence configuration learns to make a proper embedding of 

he signal in its hidden space. This process is analogous to the one 

raditionally performed by dynamics using the mechanisms pro- 

osed by Takens, where the non-trivial problem was to find a suit- 

ble sampling interval τ for the embedding to be optimal. 

We decided to use LSTM cells as it is one of the most widely 

sed recurring network variants, but the results can be extended to 

equential models using other types of cells (classic RNNs, GRUs). 

ote that the discussion about the correctness of the embedding 

nd its relation with the target dataset and the dimensionality of 

he encoding does not depend on the particular characteristics of 

he model f θ with which we try to approximate the objective func- 

ion F . 

Furthermore, recurrent neural networks can not only be used to 

ork with series of scalar values. Although in this work we refer 

o the simplest possible architecture, recurrent cells can be com- 

ined with other types of networks (dense, CNNs) to process more 

omplex sequential data, such as multivariate time series or video. 

We believe that our findings will be of great interest to people 

orking with recurrent neural networks in all kinds of dynamical 

ystems [ 28 , 38 , 43 , 51-53 ]. Our result shows that, if the number of

redicted time steps used to train the network is sufficient to un- 

quivocally define a state of the system, the representation of the 

ata in the hidden space of the recurrent neural network is a flow 

opologically equivalent to that of the underlying dynamical sys- 

em. Otherwise, if the predicted steps used to train the model are 

ot sufficient to discern a particular state of the system, a correct 
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epresentation in the hidden state is not guaranteed, and this is 

he case regardless whether the network does a good job in terms 

f prediction error. 

Having a correct representation of the time series in the hid- 

en space, i.e. a proper embedding, allows us to access a phase 

ortrait equivalent to that of the original system, which is usu- 

lly unknown. For example, when using recurrent neural networks 

o predict the evolution of fluids (as made in [54–58] ) the low- 

imensional dynamics in the hidden space can be studied as a 

roxy for the dynamics of active modes involved in the actual 

roblem under investigation. Future work will investigate whether 

 correct representation of the flow in the hidden space also con- 

ributes to having a more robust and accurate long-term prediction 

f the system’s behavior. 
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