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A B S T R A C T   

In this work, we use tools from nonlinear dynamics to generate synthetic bird songs with frequency modulations 
compatible with sketches reported in a study of chingolo (Zonotrichia capensis) songs in 1966. Using machine 
learning tools, we conclude that some of the sketches correspond to themes that are still sang in the same region, 
five decades later.   

1. Introduction 

The chingolo (Zonotrichia capensis) is an oscine bird found in South 
America, some regions of Central America, and some Caribbean islands. 
The song of the chingolo includes a first part called theme. The theme 
consists of a few (one to five) notes with modulated frequency. Each 
chingolo has a particular theme, although there are chingolos that can 
sing two or three different themes. The second part of the chingolo song 
is the trill, which is a fast repetition of identical notes with decreasing 
frequency [1–3]. 

The trill of the chingolo varies between areas with different envi-
ronments. The trill remains stable within an ecologically homogeneous 
area. F. Nottebohm made the first study of the incidence of song varia-
tion in some Argentine populations of chingolos. This study, conducted 
in 1966, made it possible to identify a set of different themes in various 
geographical locations. In [1], the author found examples of variations 
of chingolo themes in Parque Pereyra Iraola (Buenos Aires Province, 
Argentina). In this work, we analyze, five decades later, the persistence 
of Zonotrichia capensis themes reported in 1966 in Parque Pereyra. The 
aim is to test the hypothesis that chingolos in Parque Pereyra still sing 
some themes described by [1]. 

The themes cataloged by Nottebohm are a set of manual field an-
notations made from his auditory interpretation (without computing 
sonograms) of the songs. In [1], the author did not use standard 
equipment for recording the songs on tape or as spectrographs. There-
fore, the only report of these themes are the field annotations described 
in [1]. In this paper, we propose to use tools from machine learning and 

dynamical systems to compare the themes reported in 1966 with data 
from field audio recordings made in the same area in 2020. 

We trained and validated an artificial neural network which com-
pares and learns the similarities between groups of songs of the same 
theme. The neural network takes the image of a spectrogram corre-
sponding to a theme and generates a 3D embedding. We used PCA to 
reduce the hyperspace to 2D and create a graph of themes clusters. To 
train the neural network, we used only images of spectrograms corre-
sponding to synthetic songs made through a computational model. The 
model for synthesizing songs brought into the present the themes from 
1966 and performed multiple variations on the synthetic themes cor-
responding to the 2020 field recordings. We used these synthetic songs 
to train a neural network. 

By processing our data with neural network, we identified that at 
least three of the Zonotrichia capensis themes reported in Parque Pereyra 
in 1966, persist in 2020. This is the first study to report the persistence of 
Zonotrichia capensis themes in the same area for more than three 
decades. 

2. Identification of themes in the songs of Zonotrichia capensis 

The common chingolo (Zonotrichia capensis) is an oscine bird that 
executes a stereotyped song, made up of notes (syllables) that follow a 
particular pattern. Two parts compose the song of chingolo: the intro-
duction, and the trill. The introduction is a sequence of between two and 
five whistle notes (pure tones with slow frequency modulation). 
Depending on the number, configuration, and order of the notes in the 
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introduction, it is possible to distinguish different themes. The trill is a 
more or less rapid repetition of the same note within descending fre-
quency modulation. Fig. 1 shows a spectrogram of a typical chingolo 
song, where we indicate the theme and the trill [1–3]. 

The features of the habitat determine important characteristics of the 
trill. Different trills vary in the number of notes, their duration, the inter- 
syllabic time separation, and the maxima and minima of the frequencies. 
A group of birds, in an ecologically homogeneous area, share these trill 
features, giving way to dialects [1–4]. 

In general, each chingolo has a specific theme, although there are 
chingolos that can sing two or three different themes. The features of a 
theme are distinctive to each bird, so they are used as identity signatures 
[5,6]. 

To identify the different themes, a trained researcher visually ana-
lyzes the spectrogram of the song and identifies some patterns of the 
sound [7]. In the chingolo, typical features that must be analyzed are the 
shape, the type of modulation, and the number of notes. These patterns 
can be classified broadly in four classes: linear, concave, convex, and 
concave-convex. The four types of frequency modulations are: 
ascending, descending, ascending-descending, and without modulation 
(constant frequency) [5]. 

F. Nottebohm conducted one of the firsts studies on the geographical 
variations of the chingolo's song in Argentina in 1966. The author did 
not use any audio recording system or sound-spectrographic analysis 
equipment, so there are no audio files of the reported songs or their 
spectrograms. The only report available of the songs is a set of annota-
tions based on his estimation of the previously described sound features 
[1]. 

One of the areas that he studied was Parque Pereyra. The author 
cataloged twelve themes of chingolos that share the same dialect in the 
studied area [1]. Fig. 2 shows the representation of the themes reported, 
indicating each theme with an alphabetical letter. 

In 2020, we recorded multiple chingolo songs along a 3 km internal 
road in Parque Pereyra (GPS coordinates: (− 34.8616, − 58.1163) to 
(− 34.8659, − 58.1382)). A preliminary analysis of the spectrograms 
allowed us to identify 13 different themes. In Fig. 3, we show their 
spectrograms. We computed each spectrogram after processing the 
audio recordings with a noise reduction filter and a band-pass filter with 
cutoff frequencies between 1.5 kHz to 8 kHz. We applied a Gaussian 
window (standard deviation of 128 points), processing segments of 1024 
samples, with successive overlaps of 512 samples. To visualize these 
spectrograms, we considered a clipping of less than 1/600 of the 
maximum value of each spectrogram's signal [6]. 

A visual comparison between the themes of 1966, and the ones we 
measured in 2020, allowed us to identify that there are similar themes. 
However, similarity clustering using visual analysis is subjective, and 
depends on the researcher's experience identifying patterns as well as it 
is conditioned by his/her biases [7,8]. 

Machine learning techniques and neural networks are robust and 

reproducible techniques used to analyze large volumes of data in an 
unsupervised or semi-supervised way. Convolutional neural networks 
are designed to efficiently extract the optimal features from image data 
that lead to efficient classification. Among the uses of neural networks 
are automatic classification and data clustering based on their similar-
ities [9]. 

The training process of a neural network requires a previously clas-
sified representative data set. In our case, to use a neural network that 
organizes the chingolo themes according to their similarities, we need 
many songs corresponding to each theme. Typical data augmentation 
operations used in machine learning tasks do not apply to this research, 
as they generate songs variations that are inconsistent with biological 
variability [5,6]. Furthermore, there are no spectrograms from the songs 
described in 1966. 

We used a computational model for synthetic song generation in 
order to produce multiple variations of chingolo songs. We obtained 
these variations by modifying the model parameters within a biologi-
cally acceptable range [5,6]. In this way, we created a set of synthetic 
data corresponding to the spectrograms of each theme. We used only 
images of synthetic spectrograms to train a neural network capable of 
clustering the themes based on similarity estimates. 

3. The computational model for synthesizing songs 

The computational model of synthetic song generation describes the 
physics of birdsong production. The sound-producing organ in birds is 
the syrinx, which is a structure that supports two pairs of lips, at the 
junction between the bronchi and the trachea. When a strong enough 
airflow passes through the lips, they vibrate, producing oscillations that 
modulate the airflow and generate the emitted sound [5,10,11]. 

Singing occurs through the control of air sac pressure and the 
configuration of the syrinx. Pressure control allows the airflow through 
the lips to be varied, while the configuration of the syrinx affects the 
fundamental frequency of the oscillations. The increased air sac pressure 
provokes the threshold of the oscillatory movement of the lips [5,10,11]. 

The model assumes the lips are stationary when the bird is silent. The 
airflow modulated through an increased pressure causes it to remain in 
the phonation region. A reduction of the pressure causes the sound to 
stop. The disappearance of the oscillations occurs in an inverse Hopf 
bifurcation. In the proximity of the bifurcation region, the model 
transforms into a set of equations describing the labial dynamics. Eq. (1) 
shows the system of equations that describes the labial dynamics for 
Zonotrichia capensis [5,11]. 
⎧
⎪⎪⎨

⎪⎪⎩

dx
dt

= y

dy
dt

= kγ2x − γx2y + βγy
(1) 

Fig. 1. Spectrogram of a typical chingolo song.  

Fig. 2. Reported themes in Parque Pereyra in 1966 (adapted from [1]).  
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In Eq. (1), x represents the midpoint labial position; k is the resti-
tution constant, which is proportional to the labia tension; β is a negative 
dissipation, proportional to air sac pressure; while γ is the timescale of 
the system. Eq. (2) models the pressure at the tracheal input pi needed to 
generate sound [5]. 

pi(t) = A
dx(t)

dt
+ pback

(

t −
L
c

)

pback(t) = − r pi

(

t −
L
C

)

(2) 

In Eq. (2), A is a coefficient that depends on the airflow, L is the 
length of the trachea, c is the speed of sound in the medium, and r is the 
reflection coefficient. The pressure at the output of the trachea is po =

(1 − r)pi
(
t − L

C

)
, which forces the neck of a Helmholtz resonator which 

represent the oropharyngeal-esophageal cavity (OEC). The set of Eq. (3) 
models the operation of the OEC as a signal filter [12]. 

di1

dt
= i2  

di2

dt
= −

i1

cL1
−

(
rd

L2
+

rd

L1

)

i2 +

(
1

cL1
+

rdr2

L1L2

)

i3 +

dpo
dt

L1
+

rdr2

L1L2
po (3)  

di3

dt
= −

(
L1

L2

)

i2 −

(
rd

L2

)

i3 +

(
1
L2

)

po 

An equivalent electrical circuit represents the dynamic of the 
Helmholtz resonator with an opening. The sound emitted is proportional 
to the value of i3, ruled by a set of equations derived in [12]. The pa-
rameter's values corresponding to eq. 1 are γ = 24000; while the stan-
dard value of β = − 0.15. The β value follows a normal distribution 
(0, 0.05) and is varied in every integration of the model. In Eqs. (2) and 
(3), the parameters used to generate synthetic songs in Zonotrichia 
capensis are L = 0.025; r = − 0.65; L1 = 1

20; L2 = 1
104; r2 = 0.5× 107; 

rd = 24× 103; and c = 5
350×108 [5]. 

The complexity of the acoustic modulations of singing arises from 
simple modifications of a very generic gesture in lung pressure and vocal 
fold tension [13]. The acoustic modulations in Zonotrichia capensis 
correspond to three elementary frequency modulation patterns: 

sinusoidal, linear, and exponential downsweep. Table 1 shows the pa-
rameters for each modulation pattern. 

The model takes as input the modulation pattern of each note and the 
necessary parameters for its reproduction (Table 1). Then, the model 
generates a list of fundamental frequencies for each note. The value of 
the parameter k, that allows obtaining the fundamental frequency w, is 
k = 6.5× 10− 8w2 + 4.2× 10− 5w+ 2.6× 10− 2. The relationship be-
tween k and w was obtained through a series of numerical simulations in 
the parameter space of the model, varying the values of k and computing 
for each simulation the fundamental frequency w of the synthesized 
song. In this way, we propose a polynomial relationship between k and 
w, to then use the list of pairs (k,w) to compute the coefficients of the 
polynomial through a numerical regression [11]. Then, the model uses 
the list of fundamental frequencies transformed into the necessary pa-
rameters to synthesize a song. The final song retains the spectral content 
of the sound emitted by the bird. 

To reproduce the basic gestures, we integrated the dynamic model 
many times, varying the values of the parameters as shown in Table 1. 
We obtained the range of variation of the parameters from the statistical 
analysis of song samples of each theme identified in the field recordings 
of 2020. We analyzed the spectrograms of ten songs per theme, except 
for Theme 4c, for which there are only two songs recorded. 

The parameters that characterize each song (the initial and final 
values of the fundamental frequency of each note, the duration of each 
note, and the time difference between the notes) have variation in a 
range of less than 7 % between the different songs. To obtain the 

Fig. 3. Spectrogram of chingolo themes in 2020.  

Table 1 
Basic frequency modulation patterns for the song of the Zonotrichia capensis.  

Modulation 
pattern 

Frequency Parameters 

Sinusoidal 
w(t) = wf +

(
wi − wf

)( t − ti
tf − ti

)
wf , wi, tf , ti 

Linear 
w(t) = wav + Asin

(
αi +

(
αf −

αi
) )( t − ti

tf − ti

)

wav,A,αf ,αi, tf , ti 

Exponential 

w(t) = wf +
(
wi − wf

)
e
−
3(t − ti)
(
tf − ti

)
wf , wi, tf , ti  
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variations of the values in the parameters, we calculated a Gaussian 
distribution with mean and standard deviation from the song examples 
for each of the themes. 

To generate the themes of 1966, we analyzed the patterns of all the 
themes (i.e. those from 1966 as well as the ones recorded in 2020). 
Among all the themes, we identified the presence of notes that follow 
patterns of the linear type of constant frequency, ascending linear, rising 
exponential and falling exponential. We considered the ascending- 
descending type patterns as a combination of an ascending linear 
gesture followed by a falling exponential gesture. 

To obtain the range of variations of the parameters used to synthesize 
the songs of 1966, we grouped the similar patterns of all song recorded 
in 2020. In this way, we have a pattern conformed by songs of different 
themes. This result in a range of variation for each pattern of 12 %. 

The synthetic spectrograms presented random differences in their 
parameters, consistent with biological variability among the songs of a 
theme. We generated 100 synthetic spectrograms for each theme as 
surrogate data. From the themes of the year 2020, we randomly took 60 
spectrograms for training the neural network, and 20 spectrograms for 
the validation. We separated this sample of 80 spectrograms from the 
remaining 20 spectrograms, to later use these last data in the network 
testing. Fig. 4 shows examples of the spectrograms generated by the 
computational model for some themes from 1966 and 2020. 

4. Neural network for themes identification 

The neural network used is a siamese type, where the cost function is 
the contrastive loss. We built a siamese network because it allows us to 
employ a small data set and determine the similarities between different 
classes (themes). We took images of synthetic spectrograms corre-
sponding to the year 2020 themes to train and validate the neural 
network. The network clustered each spectrogram based on similarities, 
maximizing the distance between groups of spectrograms that corre-
spond to different themes. In the tests, we analyzed the similarities of the 
themes of the year 2020 with those of 1966. We say that a chingolo 
theme persists if the distances between clusters are so small that they 
overlap in space. 

A siamese network is built from two identical branches that share the 
same architecture and weights. Each branch is a convolutional neural 
network that uses as input the images of the synthetic spectrograms. 
Convolutional neural networks are designed to extract the optimal fea-
tures from image data that lead to efficient classification. Neural net-
works include a set of fully connected convolutional layers and ReLU 
activation functions. The objective of the contrastive loss function is to 
determine the Euclidean distance between the features obtained by 
introducing the two images into the model [14]. In this way, we built 

clusters of similar themes and maximized the distance between groups 
of different themes. 

The use of synthetic spectrograms as input of the neural network 
allows us to use the trained network with images of spectrograms of field 
recordings. To obtain the spectrogram of field recording, we use 
different strategies to extract/emphasize the spectral pattern of the 
sound. We can expose these patterns, adjusting the time-frequency res-
olution used to compute the spectrogram. 

We built the convolutional networks with four 2D layers alternating 
with four Max-Pooling layers. The network features a final pair of dense 
layers. The 2D convolutional layers have output filter sizes of 64, 128, 
256, and 512, obtained from their inputs after performing a convolution 
with 15 × 15, 7 × 7, 4 × 4, and 4 × 4 size windows, respectively. All 
Max-Pooling layers perform a dimensionality reduction by a factor of 2, 
which makes the images smaller. This allowed to reduce the computa-
tional cost, minimize the possibility of overfitting and increase the 
abstraction of the input data. The final two dense layers consisted of 
1024 and 3 units, respectively. The final layer had 3 units because we 
want to represent the data in a 3D space. 

In the early stages of the work, we train the network using an output 
layer of two neurons, thus obtaining a direct representation in a 2D 
plane. The trained models with two output neurons presented over-
lapping songs of different themes. In these models, the distances be-
tween clusters are small. 

To increase the resolution and the distance between clusters, we 
increase the output dimension and train the networks using an output 
layer of three neurons. We use the PCA method for the 2D visual rep-
resentation of the output data. 

To avoid overfitting, we set the regularization parameter l2 =
0.0002, and we randomly dropped some weights of the network con-
nections (setting their values to zero). We set the dropout value to 0.2 
and the learning rate to 0.001. We converted our images to grayscale 
format, with a size of 300 × 200 pixels. We set the batch size as 128 
units, and the training took place in 450 epochs. We trained the network 
with the Keras library and the ImageDataGenerator class, in which each 
image was a tensor. We normalized the values in each image to 255. The 
tensor output represents the distance between the input images to the 
network. A smaller distance means more similarities between the 
images. 

The contrastive loss function uses Keras/TensorFlow. The input ar-
guments are a pair of images with their labels and the margin value for 
the loss function. The labels allow setting a value equal to ˝1˝ when the 
two images are similar, and ˝0˝ when they are of different classes. Eq. (4) 
shows that the function returns the loss value for a pair of input images 
[14,15]. 

Fig. 4. Spectrograms generated by the computational model. The blue box indicates 1966 themes and the green box 2020 themes. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Ln =
1
2
(
yndn

2 +(1 − yn)max(margin − dn, 0)2 ) (4) 

In Eq. (4), the variable y represents the assignment of a value ˝1˝ or 
˝0˝ in correspondence with the similarities of the pairs of images; dn is 
the Euclidean distance between the vector of features learned by the 
network. For a couple of images f0 and f1, dn =

⃦
⃦f0n − f1n

⃦
⃦

2. The term 
margin reinforces the constraint: if two images in a pair are different, 
their distances must be at least the value set for the margin, or a loss will 
occur. The margin value in our function is equal to 2. 

5. Results of the analysis of the themes 

We used the network to analyze the similarities between the themes 
of 2020 with those described for 1966 in Parque Pereyra. We trained the 
neural networks ten times, so we ended up with ten models. Each model 
uses a random set of synthetic spectrogram images. To test the neural 
network, we used the set of 20 images of synthetic spectrograms that we 
separated from the training and validation set. 

We performed a test of similarities for each of the ten models of the 
neural network. Then, we projected the location of the songs on a 2D 
plane. Since the output of the network was a 3D vector, we used PCA to 
reduce the dimensionality to 2D. The maximum value of sample vari-
ance provided by the third component was 1.2 %, so the 2D represen-
tation is reliable. Fig. 5 shows the 2D visualization of the results of the 
similarities analysis of the chingolo themes for one of the trained 
models. 

In Fig. 5, we indicate with black arrows three areas where there is an 
overlap of themes. Arrow 1 points to a cluster of Theme 1 (2020) and 
Theme 4b (2020) with Theme B (1966). The overlap between these 
themes allows us to conclude that Theme B, Theme 1, and Theme 4b are 
the same. Therefore, Theme B persists. We need to consider Theme 1 and 
Theme 4b as the same theme, since their statistical parameters and 
modulation patterns are similar. The main difference between these 
themes is in the duration and the value of the frequency of the first note, 
varying 5 % between the two themes. During the visual identification of 
the themes of 2020, we consider Theme 4b as different, since it is sung by 
a chingolo capable of executing three different themes [6]. 

In Fig. 5, we also indicate with Arrow 2 the cluster of Theme D with 
Theme 5; and with Arrow 3 the cluster of Theme K with Theme 4a. 
Theme D and Theme 5 are themes that share three notes, where the first 
two are ascending linear-type patterns, and the third note is an expo-
nential downsweep. Theme K and Theme 4a have two notes, the first is an 
ascending exponential pattern, and the second is the downsweep. 

To quantify similarities, we computed the distance separating the 
themes of 1966 from those of 2020. We compute the distance in 2D after 
applying the PCA method. A chingolo theme persists if the distance 
separating the clusters is small, and therefore an overlap occurs. In 
Fig. 6, we show the distance between Theme B and the identified themes 
in 2020. The data shown in Fig. 6, was computed with the data used to 
generate Fig. 5. 

The closest distance to Theme B corresponds to the songs of Theme 1 
and Theme 4b. Moreover, Fig. 6 shows the overlap between the songs in 
Theme 1 and Theme 4b. In all the trained models of the neural network, 
the songs in Theme B are always at a smaller distance from the songs of 
Theme 1 and Theme 4b in respect to the other themes. 

In Fig. 7, we show that for the ten trained models of the network, the 
distance between Theme B to Theme 1 and Theme 4b remains constant. 
The trained models allow us to compute the mean distance and the 
standard deviation between a theme to the rest. In Table 2, we show the 
mean distances and standard deviation values for Theme B to Theme 1 
and Theme 4b; Theme D to Theme 5; Theme K to Theme 4a. 

The distance analyses for the multiple trained models allows us to 
conclude that at least three themes of Zonotrichia capensis reported by 
[1] in 1966 persist in Parque Pereyra in 2020. In this work, we report for 
the first time the persistence of chingolo themes for more than three 
decades in a micro geographical area. 

We explain the persistence of these themes from the point of view of 
the learning process of the juveniles, since it is probable that they take as 
a reference the themes more sung in an area. The themes mostly sung in 
Parque Pereyra in 1966 are Theme B and Theme D, with 74 % of the 
chingolos singing these themes, while 7 % sang Theme K [1]. Theme B is 
also the most sung in the northeast of Buenos Aires, according to a study 
made in 1990 [16]. Therefore, the themes that have persisted are those 
sung by the majority of chingolos. 

6. Conclusions 

In this work, we analyze, five decades later, the persistence of 
Zonotrichia capensis themes identified in Parque Pereyra in 1966. To 
analyze the persistence of the themes, we implemented an automatic 
processing method by means of a siamese neural network with a 
contrastive loss function. In order to train, validate and test the neural 
network, we used images of spectrograms computed from synthetic 
songs generated by a computational model. Using these techniques, we 
report for the first time the persistence of chingolo themes for more than 
three decades in a micro geographical area. According to [1], the songs 

Fig. 5. Similarities analysis for one of the trained models.  
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that are preserved are those that were sung by most of the chingolos in 
Parque Pereyra in 1966. 

A juvenile learns a theme through the imitation of the song of the 
adults of their population. The annual disappearance rate for adult 
chingolos ranges from 30 to 77.6 %. Then, a theme has a greater prob-
ability of persisting if a higher number of juveniles learn a theme [17]. 

In the last years, machine learning tools have allowed us to carry out 
data driven projects that were impossible just a few years ago. In this 
work, we used computational nonlinear models of song production to 
bring back to life songs compatible with sketches made five decades ago. 
We also used machine learning tools to compare them with present re-
cordings. The machine learning tools used in this work, which are sia-
mese neural networks, allow a comparison between the songs without 
the need to design the features that are pertinent for the comparison. 
This is an example of how nonlinear dynamics and machine learning can 

provide us with tools that will enrich our studies of animal vocal 
communication. 
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Fig. 6. Distances between Theme B songs to 2020 theme songs.  

Fig. 7. Distances between songs of Theme B to songs of Theme 1 and Theme 4b for all models trained.  

Table 2 
Values of mean distance and standard deviation for the themes that persist in 
2020.   

Mean [a.u.] σ [a.u.] 

Theme B to Theme 1  0.155  0.097 
Theme B to Theme 4b  0.179  0.115 
Theme D to Theme 5  0.143  0.087 
Theme K to Theme 4a  0.112  0.069  

R. Bistel et al.                                                                                                                                                                                                                                    



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 165 (2022) 112803

7

References 

[1] Nottebohm F. The song of the chingolo, Zonotrichia capensis, in Argentina: 
description and evaluation of a system of dialects. The Condor 1969;71(3): 
299–315. 

[2] King JR. Variation in the song of the rufous-collared sparrow, Zonotrichia capensis, 
in northwestern Argentina. Z. Tierpsychol. 1972;30(4):344–73. 

[3] Kopuchian C, Lijtmaer DA, Tubaro PL, Handford P. Temporal stability and change 
in a microgeographical pattern of song variation in the rufous-collared sparrow. 
Anim. Behav. 2004;68(3):551–9. 

[4] Mundinger P. Microgeographic and macrogeographic variation in acquired 
vocalizations in birdsKroodsma DE, Miller EH, editors. ‘Acoustic Communication in 
Birds. Vol. 2: Song Learning and its Consequences’ 1982:147–208. 

[5] Tubaro PL, Mindlin GB. A dynamical system as the source of augmentation in a 
deep learning problem. Chaos, Solitons & Fractals: X 2019;2:100012. https://doi. 
org/10.1016/j.csfx.2019.100012. 

[6] Bistel RA, Martinez A, Mindlin GB. Neural networks that locate and identify birds 
through their songs. The European Physical Journal Special Topics 2021;1–10. 
https://doi.org/10.1140/epjs/s11734-021-00405-5. 

[7] Giret N, Roy P, Albert A, Pachet F, Kreutzer M, Bovet D. Finding good acoustic 
features for parrot vocalizations: the feature generation approach. J. Acoust. Soc. 
Am. 2011;129(2):1089–99. https://doi.org/10.1121/1.3531953. 

[8] Jones AE, ten Cate C, Bijleveld CCJH. The interobserver reliability of scoring 
sonograms by eye: a study on methods, illustrated on zebra finch songs. Anim. 
Behav. 2001;62(4):791–801. https://doi.org/10.1006/anbe.2001.1810. 

[9] Chollet F. Deep learning with python. Simon and Schuster; 2021. 
[10] Goller amp, Suthers.. Role of syringeal muscles in controlling the phonology of bird 

song. J.Neurophysiol. 1996;76(1):287–300. 
[11] Laje R, Gardner TJ, Mindlin GB. Neuromuscular control of vocalizations in 

birdsong: a model. Physical Review E. 2002;65(5):051921. https://doi.org/ 
10.1103/PhysRevE.65.051921. 

[12] Perl YS, Arneodo EM, Amador A, Goller F, Mindlin GB. Reconstruction of 
physiological instructions from zebra finch song. Phys. Rev. E. 2011;84(5):051909. 
https://doi.org/10.1103/PhysRevE.84.051909. 

[13] Gardner T, Cecchi G, Magnasco M, Laje R, Mindlin GB. Simple motor gestures for 
birdsongs. Phys. Rev. Lett. 2001;87(20):208101. https://doi.org/10.1103/ 
PhysRevLett.87.208101. 

[14] Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with 
application to face verification. 2005 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (CVPR’05) 2005;1:539–46. https://doi. 
org/10.1109/CVPR.2005.202. 

[15] Rosebrock A. January 18). Contrastive Loss for Siamese Networks with Keras and 
TensorFlow. 2021:1–35. https://pyimagesearch.com/2021/01/18/contrastive-loss 
-for-siamese-networks-with-keras-and-tensorflow/. 

[16] Tubaro PL. Aspectos causales y funcionales de los patrones de variación del canto 
del chingolo (Zonotrichia capensis). 1990. 

[17] García NC, Arrieta RS, Kopuchian C, Tubaro PL. Stability and change through time 
in the dialects of a neotropical songbird, the rufous-collared sparrow. Emu-Austral 
Ornithology 2015;115(4):309–16. https://doi.org/10.1071/MU14099. 

R. Bistel et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170255520683
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170255520683
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170255520683
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170252476885
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170252476885
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170252552225
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170252552225
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170252552225
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170254275694
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170254275694
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170254275694
https://doi.org/10.1016/j.csfx.2019.100012
https://doi.org/10.1016/j.csfx.2019.100012
https://doi.org/10.1140/epjs/s11734-021-00405-5
https://doi.org/10.1121/1.3531953
https://doi.org/10.1006/anbe.2001.1810
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170253048165
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170253464685
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170253464685
https://doi.org/10.1103/PhysRevE.65.051921
https://doi.org/10.1103/PhysRevE.65.051921
https://doi.org/10.1103/PhysRevE.84.051909
https://doi.org/10.1103/PhysRevLett.87.208101
https://doi.org/10.1103/PhysRevLett.87.208101
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://pyimagesearch.com/2021/01/18/contrastive-loss-for-siamese-networks-with-keras-and-tensorflow/
https://pyimagesearch.com/2021/01/18/contrastive-loss-for-siamese-networks-with-keras-and-tensorflow/
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170255448413
http://refhub.elsevier.com/S0960-0779(22)00982-1/rf202210170255448413
https://doi.org/10.1071/MU14099

	An analysis of the persistence of Zonotrichia capensis themes using dynamical systems and machine learning tools
	1 Introduction
	2 Identification of themes in the songs of Zonotrichia capensis
	3 The computational model for synthesizing songs
	4 Neural network for themes identification
	5 Results of the analysis of the themes
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


