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A B S T R A C T   

Artificial neural networks have become essential tools in data science for uncovering insights from complex data. 
However, they are usually seen as black boxes. In this work we explore how an autoencoder processes complex 
spatiotemporal information. We analyze the topological structure of reconstructed flows in the latent space of an 
autoencoder for two distinct test cases. The first case involves a synthetic spatiotemporal pattern for the tem-
perature field in a convective problem, illustrating a classic extended system that exhibits low-dimensional 
chaos. The second case focuses on an experimental recording of the labial oscillations responsible for sound 
production in an avian vocal organ, as an example of periodic dynamics in a biological system. We find that the 
state representation in its latent space can be topologically equivalent to the phase space of the problem. 
Autoencoders thus retain phase space representations of the data hidden in its latent layer.   

1. Introduction 

It is a core approach in many disciplines of the natural sciences, to 
construct minimal models that account for the temporal evolution of 
variables that describe the system under study. The variables are 
interpretable magnitudes and, in the best cases, entirely measured. Time 
evolution rules seek to be written in terms of simple mechanisms, 
whenever possible based on previous theoretical frameworks (e.g., 
Newton's laws for a mechanical problem, or Maxwell's laws for an 
electromagnetic one). In recent years, a different strategy has emerged 
in the natural sciences, broadly known as “data driven”. This approach 
foregoes the need to pre-identify relevant variables and, in many cases, 
does not seek to elucidate minimal mechanisms. Typically, these stra-
tegies are applied when it is necessary to extract information from a 
massive amount of data, and the objective is focused on the ability to 
carry out predictions. However, these strategies should not be viewed as 
antagonistic. In fact, they can be utilized synergistically, as far as we 
understand the relationship between both perspectives. In this paper we 
propose to address this unification, within the framework of a particular 
strategy in data science: the way in which an autoencoder processes 
information obtained by filming the dynamics of an extended system. 

We intend to test the hypothesis that the predictive capacity of a neural 
network with autoencoder architecture stems from generating a repre-
sentation of the dynamics in its latent space that is equivalent to the 
phase space of the problem. 

A strategy to address this issue was presented by Champion et al. [1], 
who introduced a data driven method to discover low-dimensional 
models using an autoencoder. Autoencoders are a type of deep artifi-
cial neural networks that usually have a symmetrical layered structure 
and are designed to highly efficiently encode input data in a low- 
dimensional space [2,3]. The minimal architecture consists of two 
layers, with the same number of units (input and output), and a smaller 
layer in between. The network is trained to copy the input at the output. 
The space defined by the activation values of the units in the middle 
layer is called the latent space. The possibility to map each input to the 
output requires that, in the latent space, each state is uniquely repre-
sented. In fact, the dimension of the state representation is chosen by 
determining the minimum dimension of the latent space that still allows 
the reconstruction of all the inputs. If each point in this space corre-
sponds to a state, each point will have a unique future. Therefore, the 
evolution of the latent variables of the problem gives rise to a flow which 
may be modeled by a dynamical system. In dynamical systems theory, 
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the flow can be defined as the set of solutions of the system. In their 
work, Champion et al. [1] state that if restrictions are imposed on the 
vector field (sparseness), the dynamical system reconstructed from the 
trajectories in the latent space can constitute normal forms for the 
original equations, a strategy applicable to systems close to local bi-
furcations. However, studies in the field of topology of dynamical sys-
tems impose restrictions on representations of the data [4]. The 
topological organization of the flow acts as a fingerprint: if the repre-
sentation fails to capture the topology of the phase space, any fitted 
model must be rejected. The question then naturally arises: is in general 
the topology of the reconstructed flow in the latent space equivalent to 
the original topology of the phase space in which the dynamics of the 
problem live? 

Recent studies on autoencoders and recurrent neural networks sup-
port this view. We recently analyzed the topology of a reconstructed 
flow using an autoencoder [5]. The Rössler system of differential 
equations was integrated, and the autoencoder was trained with seg-
ments of the time series of one of the scalar variables [6]. Each segment 
was represented by a point in the latent space, and consecutive segments 
gave rise to a flow in this space. In those numerical experiments, the 
success of reproducing each input segment to an output segment cor-
responded to cases in which the encoder was injective. Then, segments 
of the original system that constitute good approximations to periodic 
orbits were extracted. It was found that in the reconstructed flow, the 
segments showed the same topological organization. Moreover, another 
widely used architecture for temporal signal predictions, recurrent 
neural networks, was examined from the same perspective [7]. In that 
study, a network was trained with segments of scalar time series, and it 
was found that the reconstructed flows in its hidden units displayed the 
same topology as the original flow. 

In this work, we aim to extend this line of research to the case in 
which the original data comes from a movie. This is one of the most 
direct experimental ways in which the dynamics of an extended problem 
can be presented to us. Moreover, in contrast to the case for a scalar time 
series, the processing of a raw spatiotemporal recording exposes a 
fundamental feature of data science: we do not propose a priori variables 
responsible for providing a minimal description of the problem's dy-
namics, instead we leave the task to the network. To address this general 
objective, we pose two problems from two different disciplines of the 
natural sciences where the use of this experimental approach is preva-
lent. First, we analyze a synthetic movie motivated by a classical prob-
lem in fluid dynamics: the evolution of the temperature field in the 
convection model studied by Lorenz [8]. Starting with the Lorenz 
equations and integrating them numerically, we obtain the variables 
that serve as amplitudes of a set of spatial modes. These structures are 
used to generate the movie to be analyzed. We aim to test the hypothesis 
that the reconstructed topology in the latent space corresponds to the 
known Lorenz flow [4,9]. Furthermore, autoencoders have already been 
used for many problems in this field [10]. Second, we analyze an 
experimental biological data set. We utilize experimental data capturing 
the labial dynamics in the vocal apparatus of a bird. The avian phonation 
problem was theoretically studied under the hypothesis that the syrin-
geal labia's dynamics can be modeled by a relaxation oscillator. Pro-
cessing the data from the experimental movie, we quantify the distance 
between successive images, revealing the presence of relaxation dy-
namics. Subsequently, we test the hypothesis that this dynamics is re-
flected in the latent space. 

2. Analysis of a chaotic spatiotemporal pattern 

2.1. Pattern synthesis 

We generate a synthetic movie motivated by the atmospheric con-
vection problem studied by Lorenz [8]. In this seminal work, Lorenz 
studies the flow in a thin layer of fluid between two horizontal surfaces, 
when a temperature difference is maintained between them. He assumes 

a complete translational symmetry in one of the horizontal directions 
(y ), and periodicity in the other (x ). He combines the Navier-Stokes 
equations, the continuity equation, and a diffusion-convection heat 
equation for the temperature profile [11]. Expressing the fields in terms 
of a stream function and θ, the departure of the temperature from the 
non-convective steady state, Lorenz proposes a modal decomposition for 
the fields. The expansion for temperature has the following form: 

θ(x, z, t) = α1Y(t)cos
(πax

h

)
sin

(πz
h

)
− α2Z(t)sin

(
2πz
h

)

(1)  

Where z is the vertical coordinate, α1 and α2 are constants, h is the 
height of the fluid, a the aspect ratio, and Y(t) and Z(t) are functions of 
time that act as amplitudes for each spatial mode (which we call ψ1(x, z)
and ψ2(x, z) respectively). In Fig. 1(a) we show these two spatial struc-
tures. Substituting these expressions into the partial differential equa-
tions and ignoring all high-order terms in the trigonometric functions, 
Lorenz writes his famous dynamical system for the amplitude of the 
modes: 

dX
dt

= σ(Y − X)

dY
dt

= rX − Y − XZ

dZ
dt

= XY − bZ

(2)  

where X is the amplitude of the stream function's mode. By numerically 
integrating this dynamical system with σ = 10, b = 8

3 and r = 28, we 
generate temporal series with 40,000 points (time step of 0.01). We 
discard the first 1000 points to avoid the transient. In Fig. 1(b) we show 
a segment of the time series. Using these series and Eq. (1), we obtain the 
spatiotemporal pattern for the temperature that would correspond to the 
convection problem if the formulation was exact (Fig. 1(c)). We use a 
spatial discretization of 0.025, so that each image has 40 × 40 pixels, we 
take α1 = 2α2 = 1

20 and we add gaussian noise to each pixel (null mean 
value and a standard deviation of 0.01 ). 

2.2. The neural network 

Fig. 1(d) shows the typical structure of an autoencoder as the one 
used in this work. We analyze the movie using individual frames as in-
puts. Through an encoder, the network maps each frame to a point in the 
latent space, and then decodes it to an output frame. During training, the 
network's weights are optimized to minimize the mean squared error 
(MSE) between the input and output frames. If the minimization pro-
cedure finds parameters that achieved a null difference, the encoder is 
an injective function, since different inputs would otherwise be decoded 
to the same output. In other words, a minimization of the MSE implies a 
representation in latent space without self-intersections of the trajectory 
that represents the consecutive states of the data set. We seek to assess 
whether this latent space representation preserves the topological 
structure of the underlying flow. 

To analyze the movie, we partition the frames into two sets. The first 
30,000 data frames are used for training the network, while the 
remaining 9000 for testing it. We compute the temporal average frame 
and subtract it from each sample in the data set. Each frame consists of 
40 × 40 pixels, resulting in initial and final fully connected layers of the 
network with 1600 units. Intermediate fully connected layers containing 
64, 32, and 16 units encode the frame to a three-dimensional latent 
space. ReLu activation functions are used for all layers except the middle 
and output layers, where no activation functions are used. The network 
is implemented in Keras version 2.6.0, backened by Tensorflow 2.6.0. 
The training process consists of batches of 512 samples and 600 epochs. 
The Adam algorithm with learning rate 0.001, β1 = 0.9 and β2 = 0.999, 
is used to minimize the MSE. We do not perform any systematic search in 
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the hyperparameter space to optimize the MSE in the test set. 2.3. Topological analysis of the underlying dynamics 

The flux generated by integrating the Lorenz equations evokes a 
mask: the trajectories seem constrained to explore, for long periods of 

Fig. 1. Chaos in a spatiotemporal pattern describing an atmospheric convection problem. (a) The spatial structures that expand the temperature field. We use h = 1, 
a = 1 . (b) The dynamics of the variables that serve as amplitudes of the modes. Blue time series are used, as indicated in the text. (c) Six frames of the synthetic 
movie for the temperature field. (d) Schematic of the architecture of an autoencoder. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 2. Autoencoders preserve the topological organization of the flow. (a) Phase space of the Lorenz dynamical system (left). Branched manifold supporting all the 
unstable periodic orbits coexisting with the attractor (middle). Latent space representation of the spatiotemporal pattern for the test data set (right). (b) MSE of the 
test data set for training sessions with different number of units in the middle layer. We performed 80, 72, 170, 67 and 56 training sessions for the five dimensions 
shown, respectively. (c) Evolution of the MSE for the test data set using a three-dimensional latent space, and percentage of autoencoders with correct topology as 
functions of the training epochs. The mean and standard error are shown. 
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time, a two-dimensional manifold, avoiding hole-shaped areas of phase 
space (Fig. 2(a)). Formally, the Lorenz flow cannot live in two di-
mensions: it is not possible to have attractors more complex than limit 
cycles in a two-dimensional space, as we know from Poincare Bendixon's 
theorem [12]. However, Birman and Williams showed that all the pe-
riodic orbits of a flow generated by the Lorenz equations can be isoto-
pically mapped to a branched manifold preserving its topological 
structure [9]. The branched manifolds are a generalization of the dif-
ferential manifolds, with singularities in bounded areas, which admit a 
tangent space at each point. The manifold capable of supporting all the 
orbits of a Lorenz system is illustrated in the middle panel of Fig. 2(a). 

This qualitative description can be transformed into a quantitative 
one, since a branched manifold like the one illustrated in Fig. 2(a) can be 
described algebraically. This description is carried out using two alge-
braic objects: the so-called topological matrix T, and the joining array 
A [4]. The elements Tij describe how the branches are crossed if i ∕= j, 
and Tii describes the torsion of the i − branch. The joining array de-
scribes the order in which the branches are joined at branch lines. This 
algebraic description provides an enormous power of synthesis: little 
information accounts for the topological organization of the branches 
capable of sustaining the set of all the periodic orbits of the flow. In this 
way, two inequivalent flows, such as Smale's and Lorenz's, will exhibit 
sets of knotted orbits in branched manifolds described by different in-
variants. Therefore, reconstructing these objects constitutes the first step 
in the topological description of a flow. 

The way in which two periodic orbits are linked in three-dimensional 
phase space can be characterized by a topological invariant known as 
the linking number. Given two oriented curves (C1and C2), the invariant 
can be computed algorithmically from a two-dimensional projection of 
these [11]. The algorithm consists of finding the crossings between both 
curves. For each crossing, the tangent vector vi to each curve Ci in the 
direction of the flow is computed. The sign function is evaluated at v1 ×

v2, if C1 is above C2 at the crossing point (otherwise the product is 
inverted). Each crossing contributes with +½ o –½ depending on the sign 
obtained and the invariant is the resulting sum for all the crossings. To 
compute the linking number, we use a function developed for Python 
[5]. For our analysis, we separate segments of the movie that correspond 
to good approximations of the unstable orbits that coexist with the 
attractor. We do this by taking two Poincaré sections (z = 27 and y < −

10 ; z = 27 and y > 10 ) and finding the best approximations for the 
fixed points of the map. In this way, we find the two period one orbits 
(called L and R) and the period two orbit (called LR). The approxima-
tions of the orbits correspond to segments of the movie with frames of 
the test data set. These three orbits are not linked, so the linking number 
between each of these pairs is zero. 

2.4. The dimensionality of the latent space and the topology of the 
reconstructed flow 

In the panel on the right of Fig. 2(a), we show the flow obtained in 
the latent space from the encoding of each frame of the test set, using one 
of the trained networks. Remarkably, we observe that even when 
training the network with individual frames, they are mapped into a set 
that exhibits significant similarities with phase space. Moreover, upon 
analyzing the periodic orbits we find that none of them are knotted, so 
the organization is equivalent to that of the original system. 

We explore the network's performance depending on the dimension 
of the latent space by performing numerous training sessions while 
varying the number of units in the latent layer. In Fig. 2(b), we show the 
MSE distributions for the test data set at the best epoch. We find a 
limited predictive power of the autoencoder when the dimension of the 
latent space is one. However, with two units (and beyond), we achieve a 
reasonable reconstruction. This is because although the dynamical sys-
tem governing the evolution of the spatiotemporal pattern is three- 
dimensional, the flow spends extended periods exploring a two- 
dimensional manifold. In fact, the branched manifold consists of a set 

of two two-dimensional manifolds that are joined together in a one- 
dimensional curve (Fig. 2(a) middle panel). This is reflected in the fact 
that measures of the dimension of the attractor are close to two, for 
example the correlation dimension is 2.05 [13]. Therefore, the predic-
tive ability of the autoencoder depends on the dimensionality of the 
underlying dynamical system. 

We assess the topological structure of the reconstructed flow in the 
latent space for 170 training sessions using networks with a three- 
dimensional latent space. For each training epoch, we compute the 
linking number between the three periodic orbits. In Fig. 2(c) we show 
the MSE and the percentage of autoencoders with correct topology, as 
functions of the training epoch. Initially, the MSE is relatively high, and 
the topological structure is often not correct. In fact, in 38 of the 
autoencoders we find self-intersections of the flow in this stage. How-
ever, at the end of the training process 169 out of the 170 autoencoders 
presented a correct topology. Thus, our analysis shows that in a syn-
thetic, well-studied chaotic extended system, the latent space of the 
autoencoder retains the topology of the dynamical system. 

3. Low dimensional relaxation dynamics in avian phonation 

In the previous section, we delved into the structure of reconstructed 
flows in the latent space of an autoencoder when analyzing synthetic 
chaotic spatiotemporal data from a fluid dynamical problem. In this 
section, we extend our study for an experimental recording of a bio-
logical system. We use this approach because the analysis of movies is 
widespread within experimental biology, spanning from microscopy to 
non-invasive techniques in animal behavior studies. Furthermore, this is 
a problem for which the dynamics are hypothesized to be simple, 
encompassing just periodic solutions [14]. The study of this problem 
thus serves as a representative example, ubiquitous in the natural sci-
ences, of an extended system exhibiting oscillatory dynamics. Beyond 
testing the reconstruction of a periodic orbit in the latent space of an 
autoencoder, we are seeking to identify the type of oscillator. Specif-
ically, we investigate the presence of temporal heterogeneities in the 
representation linked to the dynamics of a relaxation oscillator, as 
posited by earlier theoretical studies of this problem [14]. 

3.1. Direct observations of labial oscillations in the avian vocal organ 

We analyze a movie of oscillating structures during sound production 
in the avian vocal organ, the syrinx, in an ex vivo preparation [15]. The 
syrinx produces sound primarily through oscillations of tissue folds 
called labia that open and close the air passage. To describe the transfer 
of kinetic energy of air to labial oscillations, one of the simplest models 
assumes that the labia support both lateral oscillations and an upward 
propagating surface wave [14]. Moreover, the assumption that these 
two modes participate in a relaxation oscillator has played a crucial role 
in explaining several acoustic features of birdsong, such as a departure 
of tonality due to harmonics in the sound [16,17]. The movie is part of 
an experimental program aimed at directly validating these hypotheses. 

In the experiment, air is blown throughout the excised syrinx of a 
pigeon inducing membrane oscillations [15,18]. The details of the 
experimental procedure can be found in Ref. 18. In Fig. 3(a) we show six 
frames from the movie. The complete record has 400 frames, and one 
period of the syringeal dynamics is approximately covered every 29 
frames. 

3.2. Relaxation dynamics in the latent space 

To project the dynamics to a low-dimensional latent space, we design 
an autoencoder with the same architecture and loss function as 
described in the previous section. The differences are that now the 
frames have 90 × 110 pixels, so the first and final layers have 9900 units, 
and we use a two-dimensional latent space. The training process consists 
of batches of 16 samples and 200 epochs. The first 75 % of the data is 
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used to train the network, and the last 25 % to test it. We compute the 
temporal average frame and subtract it from all samples in the set. 

The dimensionality of the latent space is chosen based on the cal-
culations displayed in Fig. 3(b). We conduct 100 fittings for networks 
with different numbers of units in the middle layer. Interestingly, 
increasing the dimensionality of the latent space beyond two does not 
significantly reduce the MSE. Using this architecture, a closed curve is 
consistently obtained in the latent space. The evolution of the MSE 
during the training procedure is displayed in Fig. 3(c). We show fittings 
both with and without self-intersections of the trajectory in the latent 
space. A comparison of these fittings reveals a similar mean MSE in the 
last epoch for the train data set but not for the test data set, showing 
approximately 5 % and 40 % percentage difference, respectively. 
Encodings with self-intersections of the trajectory lead to overfitting. 

Syringeal dynamics has been modeled in the literature as a relaxation 
oscillator [14]. The most outstanding characteristic of this class of os-
cillators is that its attracting limit cycle does not have a single time scale. 
As a result, an inhomogeneity in the density of points along the cycle is 
obtained in phase space. 

It is not obvious that a heterogeneity in the distance between suc-
cessive frames corresponds to one in the encoded points in the latent 
space. To carry out this validation, we compute the Frobenius norm 
between consecutive frames (dg) and the Euclidean distance between 
consecutive points of the reconstructed flow in the latent space (dlat , see 
the two panels of Fig. 4(a)). By calculating the correlation between these 
two signals we can test the hypothesis that heterogeneities in the latent 
space reflect dynamic aspects of the problem. In Fig. 4(b) we present the 
calculation of the correlation between the distance of consecutive 
frames of the movie, and the distances between consecutive points in 
latent space for each of the 94 trained networks which did not present 
self-intersections of the trajectory in the latent space. 

Linear approaches to the problem of dimensional reduction of a 
spatiotemporal pattern are based on singular value decomposition 
(SVD), a technique capable of providing the linearly optimal way of 
truncating the dynamics into correlation eigenstates [19]. If we use this 
procedure to analyze our problem, we find two principal modes, and the 
density of points in this two-dimensional modal space also correlates 
with the series of distances between successive frames. However, the 
correlation achieved using SVD is lower than the highest correlation 
obtained using an autoencoder, as illustrated in Fig. 4(b). The selected 
autoencoder outperformed the optimal linear procedure, showing the 
power of using these networks in dynamics as a nonlinear generalization 
of SVD. 

The model proposed in the literature postulates the existence of two 
nullclines: one linear, and the other cubic [20]. The dynamics is orga-
nized by the slow exploration of two of the branches of the cubic null-
cline, and the rapid alternation between both branches. Agreement with 
such a model would imply that for each period of the oscillations there 
are two maxima and two minima in the distance between states along 
the trajectory. Since the analyzed movie is recorded at a constant frame 
rate, and there is a correlation between the frames' representation in 
latent space and the distances between consecutive frames, we expect to 
have two local maxima and two local minima in the distance between 
successive points in latent space. This expectation is positively 
confirmed in Fig. 4(a). In Fig. 4(c) we represent the distance of points in 
the latent space using a colour code, where dark areas correspond to 
regions of high density. 

The dynamics of this problem was hypothesized over two decades 
ago, based on energetic considerations about the modes involved and 
aimed at explaining spectral features of the vocalizations. Reconstruct-
ing the phase dynamics in this problem is crucial to account for the 
behavioral output of this system: the sound. The spectral features of a 

Time

Fig. 3. The experimental movie showing labial oscillations in the avian vocal organ. (a) Six frames are displayed. (b) The mean squared error does not diminish 
significantly for latent spaces of dimension larger than two. (c) We fitted 100 models, out of which 94 runs lead to non-self-intersecting trajectories in the latent 
space. The convergence of the MSE, in average, as a function of the epoch is displayed in the upper panel. The average of the MSE for the six cases leading to self- 
intersecting trajectories is shown in the bottom panel. The error bars show the standard errors. 
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relaxation oscillator alternating between two fast regions and two slow 
regions in phase space is completely different from an oscillator that, for 
instance, has a uniformly evolving phase. This result constitutes the first 
direct validation of this hypothesis. It is important to note that while the 
reconstruction of a normal form from the data could account for the 
existence of a limit cycle, it may not necessarily explain a phase het-
erogeneity. Autoencoders thus provide a topologically correct and 
dynamically faithful low-dimensional representation of an experimental 
spatiotemporal recording. 

4. Conclusions 

In this work we explored the topology of reconstructed flows from 
spatiotemporal data using autoencoders. We addressed two distinct 
problems. In the first one, the dynamics was known, since the movie was 
generated through the numerical integration of the dynamical system 
that governed the behavior of the modal amplitudes of the problem. In 
the second one, the movie was experimental in nature, and corresponds 
to the first direct observations of the labial oscillations in the vocal 
apparatus of a bird. In both cases, we find that the topology recovered in 
the latent space corresponds to the expected topology, which accounts 
for the success of the technique in terms of its ability to recover the 
dynamics in a low-dimensional representation space. 

To compare the dynamics of the original problem in phase space and 
in latent space, in the first example we focused on the topological or-
ganization of segments of the movie that are good approximations to the 
lowest periodic orbits of the system. Specifically, we explored how ap-
proximations to period one and period two orbits are linked around each 

other. Recent works in the field of topology of dynamical systems 
indicate that their organization imposes restrictions on branched man-
ifolds that support the attractor, so we focus on verifying that in the 
latent space, this organization is fully reflected. For the second problem, 
we not only verify that a periodic orbit was reproduced in latent space, 
but also that the distribution of densities of the points representing states 
reflected the dynamics of a relaxation oscillator. 

Data driven methods are commonly used to carry out predictions, 
after a training process with dynamic records [21]. Often presented as 
black boxes, these techniques were not originally expected to provide 
insights into our understanding of the underlying dynamic mechanisms. 
However, we show that deep aspects of the dynamics are faithfully 
represented in the latent space of an autoencoder [5]. In particular, we 
show that autoencoders trained with spatiotemporal data enable the 
reconstruction of the topological structure of the underlying flows. 
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Fig. 4. Local similarity between the frames' dynamics and the reconstructed flow in the latent space. (a) The temporal evolution of the distances i n frame and latent 
space for the test set, divided by its mean values, computed as indicated in the text. Each fitting is truncated after 200 epochs. In blue, we show the simulation that led 
to a dlat presenting the highest correlation with dg . (b) The values of the correlation. AE(2) stands for autoencoder with a two-dimensional latent space. We show the 
projection into a space consisting of the first two modes of a singular value decomposition analysis (denoted by SVD(2)), and the correlation of its distance with dg . (c) 
The projection of the data onto the latent space for the optimal autoencoder. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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