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A B S T R A C T

Word use presents regular oscillations mounted over slowly varying trends. These oscillations have been
recently interpreted in terms of fashion-like cycles of interest and saturation, and modelled using a logistic
equation with distributed delay. Here we show that the communities of semantically related words are partially
synchronized. To account for this, we model the words of each community using logistic equations connected
with a Kuramoto coupling. In this way, we test the simple hypothesis that the change in the occurrence
of a word depends linearly on the occurrence of its semantic neighbours. We show that this simple model
reproduces the coherence observed in the experimental communities using a single global coupling across
multiple languages, regardless of the network topology. Our results build confidence on a universal model of
language usage based on the interaction between cognitive forces and the sociocultural context.
Introduction

Most language changes occur without the express knowledge of
speakers and produce large-scale effects [1]. Some of these effects have
recently been the subject of quantitative studies [2,3] using massive
databases currently at our disposal [4,5]. Of particular interest here is
the analysis of the largest corpus of books available [6], which unveiled
the dominance of 16-years oscillations in the frequency of occurrence
of words, mounted over slowly varying trends [7] (Fig. 1a).

To explore the linguistic information carried by trends and oscilla-
tions, in a previous study we splitted both components from each word
and grouped them by similarity [8]. The result of this operation is that
words with similar trends form groups that characterize sociocultural
periods, as shown in Fig. 1b. In this example, the trends show a
maximum in the early 20th century, putting together keywords of the
post-industrial society. Other groups gather keywords of the industrial
revolution, the world wars and the digital era, among many others. In-
stead, when the trends are disregarded and only the oscillatory compo-
nents of the words are considered, communities of semantically related
words emerge, as the chemistry group in Fig. 1c. Other groups with sim-
ilar oscillations are related to economy, law, the army, medicine, etc..
Here, we refer to communities of words with similar trends as keywords,
and groups of words with similar oscillations as semantic fields.
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The observation of regular oscillations led us to propose a basic
mechanism for word usage [8] that is common to other cultural objects
with life cycles, such as fashion [9,10]. According to this interpretation,
the words that belong to a field of interest increase their occurrences
until sustained consumption produces a saturation that decreases usage,
eventually leaving the topic ready to regain attention. We made this
mechanism operative with the Volterra logistic model [11,12]

�̇� = 𝑅𝑢
[

1 − 1
𝑘 ∫

𝑡

−∞
𝐺(𝑡 − 𝜏)𝑢(𝜏) 𝑑𝜏

]

, (1)

where 𝑅 is the rate of growth of a word, and 𝐺(𝑡) a weighting factor that
indicates how much emphasis should be given to the earlier times to
determine its inhibitory effect in the present. We used the strong kernel
𝐺(𝜏) = 4𝜏∕𝜏2 𝑒−2𝜏∕𝜏 , a distributed delay with a maximum influence
𝜏∕2 years in the past. With this kernel, Eq. (1) can be rewritten as the
3-dimensional system [13]

⎧

⎪

⎨

⎪

⎩

�̇� = 𝑅𝑢 (1 −𝑤∕𝑘)

�̇� = 2∕𝜏 (𝑢 − 𝑣)

�̇� = 2∕𝜏 (𝑣 −𝑤),

(2)

which is indeed capable of producing cycles. In fact, a standard bifur-
cation analysis [14] revealed that a stable periodic solution is created
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Fig. 1. Word usage consists on cycles mounted over slowly varying trends. (a) Frequency of usage of the words time, work, and god over the last three centuries, showing
oscillations mounted on a slowly varying trend (black). Wavelet analysis revealed the dominance of oscillations with periods ∼ 15 years across languages (bottom panel). (b) We
nalyzed trends and oscillations separately: for each community of words, we show the normalized trends in the upper panel and the normalized oscillations in the lower panel.
imilar trends correspond to keywords of sociocultural periods. The trends are similar, and the oscillations are more variable. (c) Similar oscillations correspond to semantically
elated words, as shown by the chemistry group. In this case, the oscillations of the words are synchronized, but the trends present high variability.
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hrough a Hopf bifurcation as the delay is increased above the critical
alue 𝜏 = 4∕𝑅 (Fig. 2a).

The equilibrium 𝑢∗ = 𝑘 represents the static usage of a word, a
heoretical limit that is perturbed by the sociocultural context, iden-
ified with the experimental trends. Although simple, the model of
qs. (2) driven by trends 𝑘(𝑡) fits the time series of word usage [8], with
arameters 𝑅 and 𝜏 distributed along the Hopf bifurcation, as shown in
ig. 2a. According to this view, word usage is represented by externally
riven units poised near the birth of self-sustaining oscillations.

Although this model captures some central aspects of word usage,
t treats each word in isolation, and therefore fails to explain the
rganization of words in communities [15]. The high degree of os-
illatory coherence of the semantic communities, as displayed in the
xample of Fig. 1c, suggests that words are phase-coupled. We tested
his hypothesis by connecting Eq. (2) with a Kuramoto model.

esults

To map the system of Eqs. (2) into a phase model [16], we translate
he positive equilibrium (𝑢, 𝑣,𝑤)∗ = 𝑘(1, 1, 1) to the origin. In the region
𝜏 > 8∕27𝑅 (above the lower curve in Fig. 2), the linear part has
two complex roots, 𝛬 and �̄� and a real negative root, 𝛬𝑅𝑒. Changing
coordinates to the basis of eigenvectors and expressing the system in
cylindrical coordinates yields
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(3)

where 𝑅𝑧(𝜙) is the rotation matrix along the direction 𝑧 = (1,−1, 1),
as sketched in Fig. 2b; 𝑇 is the matrix of eigenvectors and 𝑛𝑙1,3 are the
transformed nonlinear terms of Eq. (2) (see Methods). This allows us to
represent a community N of 𝑁 words by an equal number of systems
2

of Eqs. (3), adding an all-to-all, purely sinusoidal Kuramoto coupling
to the 𝜙𝑖 variable [17]
𝜆
𝑁

∑

𝑗∈N
sin(𝜙𝑗 − 𝜙𝑖), (4)

here 𝜆 is a global coupling weight. Is this model capable of repro-
ucing the coherence observed for semantic fields and keywords? To
nswer this question, we first begin by characterizing our experimental
ata. In Fig. 3a, we show the distribution of the communities ranked
y size, and in Fig. 3b-Exp, we show the coherence �̄� averaged across
ommunities for semantic fields and keywords (see Methods). By con-
truction, semantic fields exhibit highly synchronized oscillations with
coherence of �̄� ∼ 0.5 across languages. As expected, the coherence of

he keywords was lower, �̄� ∼ 0.35 (Fig. 3b-Exp). Part of this coherence
tems from finite size effects; to estimate this contribution, we shuffled
he words between communities and recomputed the order parameter
o obtain a baseline of �̄� ∼ 0.2 (Fig. 3b-Shuffled).

To test the ability of our model to reproduce these properties,
e simulated each community of 𝑁 words with an equal number of
odes controlled by Eqs. (2). The initial conditions (𝑢0, 𝑣0, 𝑤0) and
arameters (𝑅, 𝜏) were selected at random, the latter within the region
ith grey points around the Hopf bifurcation shown in Fig. 2a. We

hen integrated the system expressed in cylindrical coordinates (Eq. (3))
riven by experimental trends and phase-coupled with a global weight
(Eq. (4)). We then invert the map to recover the usage 𝑢(𝑡) of all words

n the community, over which we computed the order parameter 𝜌.
epeating this procedure across communities gives us the mean order
arameter �̄� (see Methods section).

Our simulations show that communities of nodes connected with a
lobal coupling weight 𝜆𝑡 = 0.11 years−1 produce a mean coherence
ompatible with that observed for semantic fields across languages,
̄ ∼ 0.5 (Fig. 3c-TrendCoupling). The keywords are perhaps more
interesting because they allow the exploration of the relative roles of
external driving and coupling. To see this, we begin with uncoupled
non-driven nodes, for which we obtain coherence levels similar to those
of shuffled words (Fig. 3c-NoTrendNoCoupling). When the external
drive is turned on, coherence increases (Fig. 3c-TrendNoCoupling). This

reflects the fact that collectively driven oscillators can be partially
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Fig. 2. Time series of word usage are fitted by a logistic model with strong kernel. (a) Bifurcation diagram for Eq. (2). The origin is a saddle node. The other equilibrium,
(𝑢, 𝑣,𝑤)∗ = 𝑘(1, 1, 1), undergoes a Hopf bifurcation at 𝜏 = 4∕𝑅 (upper black line). The oscillations become increasingly damped until they disappear at 𝜏 = 8∕27𝑅 (lower black line).
The dimension not shown is attractive across the parameter space. English nouns fitted by the model are shown as grey points (mean growth rate 𝑅 = 0.5 ± 0.2 years−1 and mean
delay 𝜏 = 8± 3 years). Simulations were performed by selecting parameters randomly from an area similar to the fitted series. This region was fitted to match the main coherence
of the shuffled series (Fig. 1) (b). In the Hopf bifurcation, a limit cycle is created in the plane of normal (1,−1, 1). The system can be rewritten in cylindrical coordinates (𝑟, 𝜙, 𝑧)
that allows connecting the units of a word community through the phase variable 𝜙.
Fig. 3. Phase-coupled logistic equations account for the coherence observed in word communities. (a) Topic and keyword communities ranked by size. (b) Mean coherence 𝜌
across communities for experimental data. (c) Mean coherence 𝜌 across communities for simulated data. Simulations of isolated units governed by Eq. (2) with constant 𝑘 (no trend
no coupling) are less coherent than the same units driven by the experimental trends 𝑘 = 𝑘(𝑡) (trend no coupling). Weakly coupled driven units (trend coupling) exhibit coherence
levels that are compatible with the experimental data. (d) Values of 𝜆𝑠 and 𝜆𝑤 for which simulations with coupling according to Eq. (5) reach levels of coherence similar to the
experimental ones when considering the network of all the words. The errorbars correspond to the step of the explored grid. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
synchronized without being currently coupled [18,19]. Although the
effect is slight, this shows that external driving indeed contributes to
the coherence of the keyword communities [20]. In fact, when the
coupling is turned on, the coherence of keywords across languages
(�̄� ∼ 0.35) is reached for 𝜆𝑘 = 0.06 years−1 (Fig. 3c-TrendCoupling).

Thus far, we have explored semantic fields and keywords separately.
In each case, we showed that word communities can be described
as nodes of slowly driven logistic equations linked by a Kuramoto
coupling. Semantic fields and keywords differ only in their coupling
weight, with 𝜆𝑡 ∼ 2𝜆𝑘.

We then address the problem of a complete network. By construc-
tion, the communities of semantic fields are mutually exclusive (a noun
does not belong to more than one topic), and the same applies to
3

communities of keywords. However, semantic fields and keywords are
not independent of each other, as illustrated by the word copper in
Fig. 1, which belongs to both the chemistry topic and the keywords of
the early 20th century. Hence, building a global picture of a complete
network requires mixing both community types. This is performed
using the following coupling for the complete network:
𝜆𝑘
𝜅𝑘𝑖

∑

𝑗∈N 𝑘

sin(𝜙𝑗 − 𝜙𝑖) +
𝜆𝑘
𝜅𝑡𝑖

∑

𝑗∈N 𝑡

sin(𝜙𝑗 − 𝜙𝑖), (5)

where N 𝑡 (N 𝑘) is the topic (keyword) community to which the word
𝑖 belongs and 𝜅𝑖 is the degree (number of links) of the node 𝑖 in each
community. The dark blue dot in Fig. 3d shows the coupling weights
𝜆 and 𝜆 that reproduce the experimental coherence. As expected,
𝑡 𝑘
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the mixture of communities required slightly higher values than those
found when keywords and semantic fields were considered separately.

Finally, we explored the robustness of our results with respect to
the network topology. For this sake, we relaxed the fully connected
condition, simulating communities of 𝑁 words using 𝑁∕2, 𝑁∕4 and
∕8 random connections while ensuring a finite distance between any

wo nodes. In Fig. 3d we see that when the number of connections
ithin a community decreases, both coupling weights increase to reach

he experimental coherence level.
To summarize, we show that the dynamics of word usage can

e modelled as communities of phase-coupled logistic equations with
istributed delays.

onclusions

Logistic equations with distributed delays have a long-standing
radition in mathematical biology [14]. Over the years, this bare-bones
odel has also proven useful for a variety of social phenomena, such

s the upheavals of popular content in social media [21] and the
ycles in word usage, interpreted as the interplay between interest and
aturation [8].

Here we deal with the synchrony observed in different groups of
ords that tend to oscillate together in-phase. To account for this,
e derived a phase map of the system, and linked the units with a
uramoto coupling. Our main finding is that the oscillatory activity
f the model reaches the coherence observed in the experimental
ommunities, regardless of their topology and using a single global
oupling for all the analyzed languages.

The Kuramoto model relates in a very simple way to the original
ariables of the logistic equation. In fact, for a linear coupling of the
tate vectors, the corresponding phase function does not contain second
r higher harmonics, as in the Kuramoto model [22]. According to
his, the change in the occurrence of a word depends linearly on the
ccurrence of its semantic neighbours. This simple relationship between
he words of a given semantic field allows us to increase confidence in
his model for word usage dynamics.

A final remark regarding the scale of description of the problem.
n this study we focus on the nouns present throughout the last three
enturies, excluding from the analysis the words that enter or leave the
orpus in that period and the changes in the word clusters that may
ccur when the network is analyzed at a higher temporal resolution.
ere we describe the network associated with the long-term dynamics
f word usage, a necessary first step before describing the dynamics of
lusters at a higher resolution, for which the present description in the
hase domain offers a vast battery of analysis tools [23,24].

aterials and methods

Data processing. Google Books is a massive corpus of lexical data
xtracted from approximately eight million books (6% of all books ever
ublished) that has been widely used for research. Despite its size, the
atabase is not free from biases [25], which we addressed in [8].

Briefly, we collected tokens of the most common nouns converted
o singular forms in English (10,403), Spanish (8,064), French (6,291),
erman (3,341), and Italian (2,995) from Google Books 2019 [26],

etaining only nouns with at least 106 appearances per year over the
ast 300 years. We then computed the word frequency 𝑥(𝑡) = 𝑛(𝑡)∕𝑁(𝑡),
here 𝑛(𝑡) is the number of appearances of noun 𝑛, and 𝑁(𝑡) is the size
f the corpus in year 𝑡. Singular spectral analysis (SSA) [27] was used
o extract the trends 𝑘(𝑡), computed as the non-cyclic components of
he time series 𝑥(𝑡) [28]. The oscillatory components 𝑥(𝑡) − 𝑘(𝑡) were
ow-pass filtered (𝑓 < 1∕6 years−1) to avoid possible random sampling
ffects in database loading [29].
Clustering. The semantic fields and keywords were computed from

the correlation matrices of trends 𝑘(𝑡) and oscillations 𝑥(𝑡) − 𝑘(𝑡) for
4

he extracted nouns in English, Spanish, German, French, and Italian.
The communities were determined using a cutoff for the correlations of
0.04 for trends and 0.5 for oscillations; these values ensure maximum
correlation between series compatible with a cluster size distribution
that follows Zipf’s law. Communities with fewer than 10 words were
discarded.

Phase coherence. We transformed the oscillations 𝑥(𝑡) − 𝑘(𝑡) into
hase variables 𝜃(𝑡) using the Hilbert transform [30]. The collec-
ive rhythm of a community of 𝑁 words was then computed using
he order parameter averaged over the last three centuries, 𝜌 =
|

∑𝑁
𝑗=1 𝑒

𝑖𝜃𝑗 (𝑡)∕𝑁|

⟩

. The mean coherence across communities, �̄� was
hen computed. Fig. 3 shows the distribution of mean coherence values
cross communities for different languages. Coherence values were nor-
ally distributed (Kolmogorov–Smirnov test: 𝑝 > 0.05 for all languages

nd conditions). A two-sample t-test showed that only the distribution
f experimental data (Fig. 3a keywords) and the simulations of coupled
xternally driven units (Fig. 3b trend coupling) are equivalent across
anguages.
Derivation of the phase model. Translating the Eqs. (2) to the

lowly evolving point (𝑘, 𝑘, 𝑘) we have
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Considering the linear part, we obtain the characteristic equation
3+4∕𝜏 𝛬2+4∕𝜏2 𝛬+4𝑅∕𝜏2 = 0. For 𝜏 > 8∕27𝑅 (above the lower curve

n Fig. 2), we have two complex conjugate roots 𝛬1 and 𝛬2 and a real
egative root 𝛬3:
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here 𝑛𝑙1 and 𝑛𝑙3 stand for the nonlinear terms of the �̇�1 and �̇�3
n Eq. (6),

𝑙1 =
𝐿2
1(𝐿

2
1 − 4)

18𝑅𝜏𝐷
⋅

(

𝑅
𝑘
∑

𝑖,𝑗
𝑥𝑖𝑥𝑗𝐴

2
𝑖 + �̇�

)

−

− �̇�
2

[

2(𝐶 + 2 + 𝐵 − 𝐿2
1) +

√

3𝑗(𝐶 + 2 − 𝐵)
2
∑

(−1)𝑖+1
]

,

3𝐿1 𝑖=1



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 174 (2023) 113876A. Pardo Pintos et al.

T

D

c
i

D

p
c

A

(

𝑛𝑙3 =
𝐿2
1

[

−(𝐿2
1 − 4) +

√

3𝑗(𝐿2
1 + 4)

]

36𝑅𝜏𝐷

(

𝑅
𝑘
∑

𝑖,𝑗
𝑥𝑖𝑥𝑗𝐴

2
𝑖 + �̇�

)

+
𝐿1

[

(𝐶 + 2 − 𝐵) −
√

3𝑗(𝐶 + 2 + 𝐵)
]

27𝑅𝜏𝐷
�̇�+

+
⎡

⎢

⎢

⎣

1 +
(𝐿5

1∕2 − 4𝐿2
1 + 𝐸) +

√

3𝑗(𝐿5
1∕2 − 4𝐿2

1 − 𝐸)
108𝑅𝜏𝐷

⎤

⎥

⎥

⎦

�̇�

where 𝐵 = 𝐿4
1∕8 + 2𝐿1, 𝐷 = 4

√

27𝑅𝜏 − 8∕(3
√

3𝑅𝜏) − 4 − 𝐶 and 𝐸 =
𝐿4
1−8𝐿1. The matrix 𝑅𝑧(𝜙) is the usual rotation matrix along the 𝑧 axis

𝑅𝑧(𝜙) =

⎛

⎜

⎜

⎜

⎝

cos𝜙 − sin𝜙 0

sin𝜙 cos𝜙 0

0 0 1

⎞

⎟

⎟

⎟

⎠

.

Eq. (7) represents a phase map of the slowly driven logistic equation
with a strong kernel across the entire oscillatory region above the lower
curve 𝜏 = 8∕(27𝑅) in Fig. 2a. This expression was combined with the
Kuramoto phase-coupling Eq. (4) to model the communities of words.
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