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ABSTRACT

During sleep, sporadically, it is possible to find neural patterns of activity in areas of the avian brain that are activated during the generation
of the song. It has recently been found that in the vocal muscles of a sleeping bird, it is possible to detect activity patterns during these silent
replays. In this work, we employ a dynamical systems model for song production in suboscine birds in order to translate the vocal muscles
activity during sleep into synthetic songs. Besides allowing us to translate muscle activity into behavior, we argue that this approach poses the
biomechanics as a unique window into the avian brain, with biophysical models as its probe.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0194301

In this work, we present a novel method to decipher and inter-
pret the neural activity patterns associated with bird songs during
sleep. Our research reveals that thanks to the discovery of vocal
muscles’ activity during sleep, we can effectively translate these
silent replays of neural activity into synthetic songs. Key to our
approach is the utilization of a dynamical systems model for
song production. By employing this model, we not only translate
muscle activity into behavior but also propose that biomechanics
serves as a unique window into the avian brain. Our biophys-
ical models function as probes, shedding light on the intricate
relationship between neural activity and song production.

I. INTRODUCTION

The phenomenon of nocturnal neuronal replay has been
reported in different species and behaviors; see, for example,
Refs. 1–3. The term replay refers to the appearance, during sleep, of
neuronal activity patterns similar to those present during the execu-
tion of motor actions. In particular, these replays have been recorded
in songbirds,1 a group of approximately 4000 avian species in which
learning plays a fundamental role in the acquisition of song.4,5 More
specifically, replays have been found in brain areas involved in song
generation and, therefore, the neural activation is related to motor

patterns controlling the respiration and the configuration of the
vocal organ. In this way, among all the neural patterns recorded
during sleep, there are some of them that can be defined as “song
replays.” On the other hand, it is difficult to interpret the behavior
associated with those neural patterns that differ from the diurnal one
as the neural code for song generation has not been unveiled yet.

Recent studies may shed some light on this matter. It has been
shown that the neural patterns that occur during sleep in the song
system of zebra finches (Taeniopygia guttata) generate electrical
activity in the muscles that control the configuration of the syrinx,
the avian vocal organ.6,7 This result shows that the replay activ-
ity is distributed throughout the song system neural network. It is
worth mentioning that one of the outputs of this neural network
(the tracheosyringeal part of the hypoglossal nucleus nXIIts) directly
innervates the syringeal muscles, while the respiratory neural nuclei
activate the respiratory muscles through indirect connections. A
particularly interesting aspect of this result is that, although the neu-
ral code to convert a pattern of neural activity into behavior (song)
is not currently known, there have been several advances in devel-
oping dynamical systems models to translate patterns of syringeal
muscle activity into sound. Biomechanical models of birdsong pro-
duction have been investigated in the past years, which are driven by
physiological signals and are capable of synthesizing realistic song-
like sounds.8–10 In this way, it is possible to use the recordings of
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syringeal muscle activity during sleep as the input of a mathematical
model of the avian vocal apparatus and synthesize songs.

These nocturnal muscle activity patterns have recently been

found to occur in suboscine birds as well,11 a set of species phylo-
genetically close to the oscine birds,12 but which are believed not to
require vocal learning to produce their species typical song.13,14 This
result is surprising precisely because the consolidation of learning
was a tempting explanation for the presence of nocturnal replay.15,16

In addition, the existence of muscle replay is a very useful result to
investigate the activity of the central nervous system during sleep in
sub-oscines, whose song-related neuronal architecture is much less
known.17,18

The translation of electrical activity in the vocal muscles of the
suboscine vocal apparatus into song is possible, thanks to the recent
report of a dynamical model of the suboscine vocal apparatus.19

In this work, we report the recordings of syringeal muscle activ-
ity during sleep in Great Kiskadees (Pitangus sulphuratus), a sub-
oscine species, and use the dynamical model to synthesize the songs
associated with them. In summary, we synthesize avian dreamed
songs.

II. RESULTS

The Great Kiskadee song is composed of three syllables, with
their typical “kis-ka-dee” sound giving the common name to the
species. Sound is produced by the oscillation of two pairs of soft tis-
sues in the syrinx,20 called labia, when the airflow coming from the
air sacs has enough energy to induce auto-sustained oscillations.21

In the case of Kiskadees, the fundamental frequency of the sound
is mainly controlled by the respiratory system, via the air sac
pressure.22 On the other hand, their most prominent syringeal mus-
cle, the obliquus ventralis muscle23 (OVM), has been shown to
control and amplify an amplitude modulation present in the first
syllable of their song.19 During the production of this syllable, the
electromyographic (EMG) activity of the OVM is most prominent.
It is highly stereotyped and consists of bursts with a characteristic
frequency (160–180 Hz, see Fig. 1). Most notably, the characteristic
amplitude modulation of this sound (which gives rise to a typical
“harshness” in the sound), is controlled in the frequency by the
activity of the OVM.

An example of a simultaneous measurement of sound and the
OVM EMG activity during song production is presented in Fig. 1.

FIG. 1. Simultaneous measurement of the electromyographic (EMG) activity of the syringeal obliquus ventralis muscle (OVM) and sound during daytime song production (left)
and during sleep (right) in Kiskadees. The top panel displays the EMG activity, the middle panel shows the measured sound, and the bottom panel shows the spectrogram
of the sound.
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In this species, patterns of song-like activation of the syringeal mus-
cles occur spontaneously during sleep. An example of such activity is
presented in Fig. 1, right panel. These patterns of burst-like activity
are qualitatively similar to those produced during song (burst-like
activation, with a well-defined characteristic frequency and a dura-
tion between 50 and 150 ms). However, their duration is more vari-
able than that of song-related activity, and the bursting frequency is
significantly reduced (for detailed descriptions and quantifications,
see Ref. 11).

Since the respiratory rhythm is not altered during sleep, the
high-energy airflow needed to start auto-sustained oscillations in
the labia and generate sound is not produced and, thus, no sound
is uttered while the OVM muscle is activated. Based on the known
role of this muscle in the process of phonation, we propose to use a
dynamical model of the phonation mechanism in order to translate
this song-like activity observed during sleep into sound.

A. Model description in singing birds

We use a previously published model of the phonation mecha-
nism and consider the existence of two coupled sound sources.9,19,24

The key aspects of the model are depicted in Fig. 2. The model reads

ẋi = yi, (1)

ẏi = αγ 2 + βiγ xi − γ 2x3
i − γ x2

i yi + γ 2x2
i − γ xiyi − γ 2a(xi − xk),

(2)

with xi being the position of the i labia (i = 1, 2, and k 6= i), α being
a parameter representing the air sac pressure, βi being a parameter
representing the muscle activity, γ being a time scale, and a being
the coupling between the two sources. This model represents the
normal form of a biophysical model of the vocal production mecha-
nism and has been shown to produce realistic synthetic songs using
physiological recordings as input.8,25,26 Its capability to reproduce

FIG. 2. Schematics of the Kiskadee vocal apparatus and model. Schematics of a
ventral view of the Kiskadee syrinx, trachea, and bronchi (left panel). The obliquus
ventralis muscle (OVM) is shown in orange. The right panel shows the schematics
of the vocal system: the syrinx is located at the juncture of the trachea and the
bronchi and has two pairs of labia, the oscillating tissue. The airflow is modulated
by the oscillations of the labia and travels through the trachea and a resonating
cavity, called oro-esophageal cavity (OEC). Each pair of labia is modeled as a
nonlinear oscillator, with a nonlinear restitution and dissipation (represented in
the diagram as springs and pistons, respectively), and a coupling between them.
The variables of the model, x1 and x2, represent the medial position of each of
the labia.

not only the fundamental frequency but also the spectral content
of birdsong has made it a unique tool to study the song system.7,8,10

Note that most of the mathematical parameters of the model can be
related to physiological parameters that can be obtained or inferred
from recordings.

The oscillations of the labia, represented by the solution of this
system, are responsible for the modulation of the airflow through the
syrinx. The pressure fluctuations at the base of the trachea are driven
by both sound sources and travel through the trachea, which can be
modeled as an open-ended tube connected to a cavity, called oro-
esophageal cavity (OEC).27,28 This pressure can then be computed as

Pb(t) = (y1(t) + y2(t)) − rPb(t − 2τ), (3)

with r being the reflection coefficient at the juncture of the trachea
and the OEC and τ being the time necessary for the fluctuation to
travel through the trachea (τ = L

c
with L being the length of the

trachea and c being the speed of sound); y1(t) + y2(t) are obtained
from Eqs. (1) and (2). The transmitted pressure to the OEC is then

PT(t) = (1 − r)Pb(t − τ). (4)

This cavity can be modeled as a Helmholtz resonator,29,30 where
the displacement of the gas, z, follows the following differential
equations:

ż = w, (5)

ẇ = −γ 2
h ω2

hz − 2rhγhw − γ 2
h PT, (6)

with γh being a time constant, rh being a damping factor, and ωh

being a characteristic frequency of the cavity.27,29 The complete song
production model is, therefore, described by Eqs. (1)–(6). The input
of this model is the parameters (α, βi), with its final output, the time
trace z(t), representing the synthetic sound produced. Briefly, the
sound source is modeled with Eqs. (1) and (2), generating a sound
wave that is passively filtered by a tube [Eqs. (3) and (4)] and a
Helmholtz resonator [Eqs. (5) and (6)]. The beak filtering properties
can be neglected.

In the case of Kiskadees, which modulates the fundamental fre-
quency of the vocalizations and controls the gating using the air
sac pressure (controlled by the respiratory muscles), we considered
the βi parameter as a constant value modulated harmonically at the
EMG frequency (see Sec. V). We then obtained a time trace of α

(parameter related to pressure), compatible with experimental mea-
surements and capable of reproducing the fundamental frequency
evolution of a typical Kiskadee syllable (see detailed description in
Sec. V). Keeping in mind that our goal is to translate EMG activity
produced during sleep into sound, we propose a method to obtain
this trace without explicitly using pressure measurements (which are
not informative during sleep as they follow quiet breathing).

B. Using the dynamical model to translate vocal

muscle activity into sound

To extend this procedure for the nighttime patterns, we rely on
the highly stereotyped nature of the Kiskadee song. First, since no
deviations from the breathing pressure patterns are observed during
sleep, we propose to use the previously described pressure gesture
α(t). However, since the duration of the activity during sleep is
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significantly more variable, the duration of the pressure gesture was
adjusted accordingly. The first challenge is then to infer the appro-
priate duration of the pressure gesture, given the measured EMG
pattern during sleep.

Second, the timing of EMG and phonation must be inferred for
the case of sleep activation, when only the EMG song-like pattern
is measured. That is, it is necessary to correctly align α(t) with the
EMG activity. We propose to estimate the timing and duration of
the phonation interval from activity observed during singing.

For a set of 95 instances of song from 2 birds, we calculated
the sound duration, EMG modulation frequency, EMG duration,
EMG frequency, and EMG onset time (relative to phonation) of
the first syllable. The Pearson correlation between these variables is
presented in the left panel of Fig. 3. This shows a compact repre-
sentation of all the calculated values, avoiding auto-correlations and
repetitions. The high correlation between the EMG duration and
sound duration (correlation coefficient of 0.80) shows that the sound
duration can be estimated from the EMG duration. In the middle
panel of Fig. 3, we show the relationship between these two variables
(red and blue dots indicate different individuals), together with a
linear fit, computed with an ordinary least squares implementation
included in the statistical package “statmodels” in Python. The blue
band around the fitting curve indicates the two sigma (95%) confi-
dence region. We propose to use this linear fit to calculate the sound
duration for EMG patterns measured during sleep. Once this value
is calculated from the EMG duration, the pressure patterns were
adjusted in duration via a linear stretching or compression to this
duration. On the other hand, the EMG onset time does not present
a high correlation with any of the measurable variables. The most
parsimonious strategy is then to sample its value from its distribu-
tion (presented in the left panel of Fig. 3). This procedure allows us
to drive the model using the EMG data observed during sleep.

The result of this procedure is presented in Fig. 4, where we
show the synthetic sound generated for both awake singing and sleep

patterns of activity. Note that in the Kiskadee song, the presence of
low-frequency modulations in the sound amplitude imparts a rough
tonality to the sound.19 Consequently, the lower average modulation
frequencies observed in the replays recorded during sleep result in
sounds that are rougher compared to those generated when the bird
is awake.

We generated the synthetic syllables by employing the dura-
tion and frequency modulation parameters derived from 95 EMG
activity files recorded simultaneously with song execution. Simi-
larly, synthetic songs were created using frequency modulation and
duration parameters, computed from the EMG activity duration as
previously described, based on 103 records of EMG activity pat-
terns measured during sleep. For each synthesis, we computed the
spectrum using the fast Fourier transform (FFT) of the signal. The
spectrum computation for the audio file was executed through a
Python implementation. Applying the fast Fourier transform (FFT)
to the audio data allowed us to obtain its frequency domain repre-
sentation. The resulting spectrum was truncated to retain only the
first half, as it is symmetrical. We computed the magnitude values
of the frequency components and performed normalization with
respect to the length of the audio data. Subsequently, the power
spectrum was derived by squaring the magnitude values.

Subsequently, we computed 4465 Pearson correlation val-
ues between the spectra corresponding to the synthesis with song
parameters (Fig. 5, left panel) and 5253 correlations between the
spectra of the syntheses with sleep parameters (Fig. 5, middle
panel). The distributions were compared using the Z-test, result-
ing in Z = 4.51 (indicating a significant difference). This finding
aligns with our earlier work, where we observed significantly distinct
values in the durations of activity patterns and modulation frequen-
cies for awake and asleep birds.11 In Ref. 11, it was observed that
in sleeping birds, the replay activity patterns exhibited a broader
range of durations when compared to those recorded in singing
birds. Additionally, the average modulation frequency identified in

FIG. 3. Analysis of the relationship between OVM EMG activity and sound characteristics (N = 95 vocalizations from two different birds). Correlations between a set of
relevant features (left panel): EMG duration, EMG onset time, EMG frequency, and sound duration. Each block shows the Pearson correlation value between two features
avoiding auto-correlations and repetitions. Linear regression of sound duration and OVM EMG activity duration (green line, 95% confidence interval represented as the
shaded region) (middle panel). The different colors indicate different birds. Probability distribution of EMG onset time, relative to sound onset time (left panel).
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FIG. 4. Synthetic sounds produced by the model driven by EMG produced during daytime singing (left panel) and by EMG observed during sleep (right panel). The parameters
used for these simulations were (γ , a, r , L, c) =

(

10000, 0.0025, 0.4, 0.1m, 350 m

s

)

. The tracheal length was estimated at 10 cm (approximately three times the value used

for a zebra finch,8 a bird three times smaller), and c = 350 m

s
stands for the speed of sound. The parameter γ in the normal form is a time scale factor.29 The reflection

coefficient at the end of the trachea was fixed at 0.4, a value low enough that ensures that the Helmholtz frequencyωh predominates as the main resonance of the upper tract
filter.29 The chosen coupling constant between the two sound sources, denoted as a = 0.0025 (a � 1), aligns with findings in,19 which showed that muscle denervation
results in a significant decrease, though not elimination, of slow modulations in sound amplitude.

sleeping birds was approximately 20 Hz lower than that recorded
in their singing counterparts. Finally, we calculated the correlations
between the spectra of the sleep and song syntheses (Fig. 5, right
panel). When comparing this distribution with the correlation val-
ues obtained from syntheses with parameters from singing birds, a
highly significant difference emerged (Z = 12.6).

III. TRILLS

The great Kiskadees exhibit a distinct vocalization pattern in
the context of territorial disputes. This behavior is part of a multi-
modal display that involves the extension of a crest of feathers on
the head. The vocalization consists of a sequence of short syllables
generated at a rate between 10 and 20 Hz, commonly referred to as
a “trill.” Analyzing muscular activity patterns during sleep reveals
consistent activity patterns corresponding to these vocalizations:

sequences of brief activation patterns occurring at a rate between
15 and 20 Hz.11

Interestingly, each of these patterns exhibits a modulation of
approximately 150 Hz, akin to the modulations observed in EMG
activity recordings during the typical “song” syllables. Therefore, we
generated a synthetic sound file using the same model employed
for synthesizing natural song syllables, based on one of these EMG
activity patterns. In the illustrated example, the trill comprised 16
short syllables, each generated with the duration and modulation
of the corresponding EMG pattern segment. Subsequently, these
syllables were sequentially spliced, with each syllable initiated at
the onset of the corresponding EMG pattern. The synthetic trill
is depicted in Fig. 6. Remarkably, during the recording of these
“trill” activity patterns, the sleeping bird exhibits the same crest
extension observed during trill execution in territorial disputes
(see supplemental material in Ref. 11.
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FIG. 5. Correlations for synthetic sounds generated from EMG recordings during singing and sleeping. The Pearson correlation coefficients are calculated from pairs of
spectra of synthetic sounds with song parameters (left panel), sounds with sleep parameters (middle panel), and pairs of sleep and song parameters (right panels).

FIG. 6. Trill EMG activity recorded during sleep and synthetic sounds generated by the dynamical model. The trill is a different type of vocalization generated by the Kiskadee
in territorial disputes. The EMG activity recorded in the OVMmuscle during sleep exhibits the characteristic modulation of the trill. The synthetic sounds were generated using
the same set of parameters as in Fig. 4.
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IV. DISCUSSION

Replays of behavior-related neural activity during sleep have
been shown to occur in different species, including rodents and
oscine birds. In oscine birds, while sleep is known to be necessary for
song development,31,32 the specific role of these replays is still under
discussion.

In oscine birds, it has been shown that, while the pressure ges-
ture needed to produce song is inhibited during sleep, these events of
neural replay descend to the syringeal muscles, which contract (as if
attempting to produce sound) during sleep.6 These patterns of mus-
cle activation during sleep can be triggered by sensory cues (song
playback) or even emerge spontaneously.

The fact that these patterns can be measured at the syringeal
muscles of suboscines, species where we have recently shown that
patterns of song-like activation occur spontaneously during night
sleep, provides an important clue to unveil the role of replays. Since
they are usually considered non-learners, and the lack of dialects
in the Kiskadees songs supports this hypothesis for this specific
species, the occurrence of “song replays” may suggest the existence
of an underlying neural structure, which predates the evolution of
learning.11 It also provides a unique tool to study the suboscine song
system. In suboscines, there is little knowledge of the neural struc-
tures related to song production. While some areas have been shown
to be similar to those of the oscine song system,18 they seem to
lack the highly developed telencephalic nuclei of the oscines. Hence,
studying replays by inspecting the electrical activity of different
brain areas could be challenging.

On the other hand, the lack of a neural code to translate
the neural activity into behavior has limited the understanding of
replays, even in species where the song system is well described.
Despite having neural recordings correlated with song, it is yet not
possible to interpret in terms of behavior those nocturnal neural
patterns that depart from what the bird generates while singing. In
this work, we argue that biomechanics can provide a unique advan-
tage to progress in this direction. First, the EMG activity recorded in
the syringeal muscles represents the integrated output of the central
nervous system. That is, a great part of the translation has already
been done by the system itself. In addition, we have a more com-
plete understanding of the physical mechanisms by which these
instructions are translated by the muscles into specific properties33

(such as labial tension) and how these affect the behavioral
output.

In this work, we have shown that dynamical systems mod-
els of biomechanics can, in fact, translate these patterns of muscle
activation into behavior. The use of physical models which cap-
ture the underlying dynamical mechanisms, allows us to extrap-
olate their region of validity, and extend it to try to understand
how patterns that differ quantitatively from those produced dur-
ing song production, are translated into sound. In this way, we
were able to create physically plausible renditions of sound. The
strategy proposed here can be generalized to other species: if there
are uninhibited outputs of the central nervous system, dynamical
models of the biomechanics can be used to translate these signals,
which represent a global readout of the central nervous system, into
behavior.

In other words, in this work, we have shown how physical
models can be used to listen to what a bird is dreaming.

V. METHODS

A. Birds

Great Kiskadees were captured using mist nets in La Plata,
Buenos Aires, Argentina, as described in the permit DI-331-2018-
GCDEBA-DFYMAGP issued by the Buenos Aires Province. Birds
were transported to the laboratory for experimentation and housed
in acoustic chambers in a 14:10 h light cycle. Food and water were
provided ad libitum. After the conclusion of the experiments, elec-
trode removal, and full recovery from surgery, birds were released
in the area where they had been captured. Experiments were con-
ducted according to the regulation of the Institutional Animal Care
and Use Committee of the University of Buenos Aires (CICUAL,
Protocol No. 113, 2019).

B. Surgery

To measure the EMG activity of the obliquus ventralis muscle,
custom made bipolar electrodes (25 µm diameter, stainless steel 304,
heavy polyimide HML insulated, annealed, California Fine Wires
Company) were implanted in the left side of the obliquus ventralis
muscle as previously described.34 The EMG signal was analogically
filtered (150 Hz high-pass RC filter) and differentially amplified
(by a factor of 225) by a custom-built electronic board, which was
carried on a previously fitted backpack.

C. EMG and song recordings

After surgery, birds were housed in custom-built acoustic
chambers. EMG and audio signals were acquired simultaneously at a
44 150 Hz sampling rate. Signals were digitized using a data acquisi-
tion device (DAQ, National Instruments USB-6212), connected to a
PC, and using custom MATLAB scripts. Sound was recorded using
a condenser microphone (Takstar SGC568) connected to an audio
power amplifier (Behringer MIC100). EMG signals were digitally
filtered, using a 150 Hz high-pass and a 3 kHz low-pass five-order
Butterworth filters applied in turn.

D. Construction of physiological instructions (α, β i)

We first synthesized 1s segments of sounds using
β1 = β2 = −0.061 and α in the range (−0.6, 0), for a one-source
model. For each of this (α, βi) , we calculated the fundamental fre-
quency of the sound, computed as the location of the FFT maxima
of y(t). This range of parameters allowed us to produce sounds with
frequencies in the range of 500–2000 Hz, which covers the typical
range for the Kiskadee.

To produce a realistic sound, we then extracted the funda-
mental frequency time trace of a real Kiskadee syllable. Then, we
estimated α, which produced the most similar frequency for each
value and, thus, transformed the frequency time series into an α

time series. Finally, the α time series was set to a proper value on
silent periods [a value for which no oscillatory solutions exist in the
dynamical system of Eqs. (1) and (2)],

α(t) =

{

α( f ) if ts < t < te

0.05 otherwise
, (7)

where ts stands for the start time of phonation, te stands for the
ending time, and α(f) stands for the time trace previously obtained.

The EMG activity was introduced as a forcing of the
βi parameters. Based on the typical EMG activity, the most
straightforward way to introduce this forcing is as a harmonic
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variation in the βi time trace. The parameters βi were modified
according to

βi(t) → βi(t) + A sin(2π ft), (8)

with f being the EMG frequency (in Hz). The amplitude parameter
of the forcing was defined as

A(t) =

{

0.035 if t ′
s < t < t ′

e

0 otherwise
, (9)

where t′s and t′e stand for the start and end time of the EMG activity.
As outlined in Ref. 19, the denervation of the OVM

results in a notable reduction in sound amplitude modulations,
although it does not entirely eliminate them. To accommo-
date for this residual effect, we employ the values β1 = −0.061,
β2 = −0.091.
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