

Metadata of the chapter that will be visualized in SpringerLink

Book Title	Nonlinear Dynamics for Biological Systems		
Series Title			
Chapter Title	The Dynamics of Sensorimotor Integration		
Copyright Year	2025		
Copyright HolderName	The Author(s), under exclusive license to Springer Nature Switzerland AG		
Author	Family Name Particle Given Name Prefix Suffix Role Division Organization Address Division Organization Address Email	Andrade Agustín Carpio	-> Carpio Andrade -> Agustín
Corresponding Author	Family Name Particle Given Name Prefix Suffix Role Division Organization Address Division Organization Address Email	Mindlin Gabriel B.	
Abstract	Sensorimotor integration refers to how the sensory feedback originating from motor actions influences the generation of motor patterns. From a dynamic perspective, this can be understood as the impact of a term in the equations governing motor behavior, which is dependent on the variables of the problem in previous instances. An important motor pattern is the generation of periodic behavior, and in this work, we will discuss the impact of delayed feedback in a system capable of displaying these patterns. This question has been addressed when the appearance of periodic motor patterns is due to a Hopf bifurcation. Here we review those results, and then move to explore the rich emergent dynamics arising in delayed systems near a Saddle-Node In Limit Cycle (SNILC) bifurcation. Our results reveal a complex subharmonic structure consistent with known activity patterns in multiple fields. We also explore potential applications of this dynamic phenomenon.		

The Dynamics of Sensorimotor Integration

Agustín Carpio Andrada and Gabriel B. Mindlin

Abstract Sensorimotor integration refers to how the sensory feedback originating from motor actions influences the generation of motor patterns. From a dynamic perspective, this can be understood as the impact of a term in the equations governing motor behavior, which is dependent on the variables of the problem in previous instances. An important motor pattern is the generation of periodic behavior, and in this work, we will discuss the impact of delayed feedback in a system capable of displaying these patterns. This question has been addressed when the appearance of periodic motor patterns is due to a Hopf bifurcation. Here we review those results, and then move to explore the rich emergent dynamics arising in delayed systems near a Saddle-Node In Limit Cycle (SNILC) bifurcation. Our results reveal a complex subharmonic structure consistent with known activity patterns in multiple fields. We also explore potential applications of this dynamic phenomenon.

AQ1

1 Introduction

Over the past few decades, extensive research has been conducted to comprehend the neural control of movement. By employing straightforward computational models to depict the actions of a single neuron or the collective actions of a neural population, it became feasible to construct basic networks capable of generating a diverse range of spatio-temporal patterns. These can be interpreted as the physiological instructions controlling the biomechanics of some peripheral system.

Certain networks, characterized as dynamical systems, exhibit the ability to yield diverse solutions contingent on specific global parameters. This capability has proven instrumental in shedding light on various phenomena, notably contributing to our

A. C. Andrada · G. B. Mindlin (✉) A. C. Andrada -> A. Carpio Andrada

Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Argentina

e-mail: gabo@df.uba.ar

Instituto de Física Interdisciplinaria y Aplicada (INFINA), Ciudad Universitaria, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina

understanding of distinct gaits observed in locomotion. In the 1970s, physiologists drew inspiration from engineering control systems to gain insight into processes involving feedback, thereby enhancing the comprehensive description of behavior.

The behavior of an animal, for instance when it is executing a motor plan, emerges from the intricate interplay among its nervous system, its motor morphological structures, and the sensory information gathered from its environment. This interaction operates bidirectionally, as the environment is also influenced by the animal's behavior. The concept of "sensory feedback" encompasses the mechanism through which animals perceive and assess the consequences of their actions on the environment. In parallel, "sensorimotor integration" involves the process by which motor output, or behavior in general, materializes through the interplay between two information channels: sensory input processing and motor plan pathways [21].

The research program is simple to articulate, yet its implementation is not without challenges, primarily due to the intricacies involved in deciphering the coding of sensory information. Within the framework of functionalism in neuroscience, the nervous system processes sensory input based on its intended purpose and destination. When the goal is perception, the processing may entail feature extraction and the amalgamation of inputs from various sensory sources. Conversely, if the sensory input is employed to guide the generation of motor commands, it must be interpreted in relation to the present state of the motor system and how it may change the course of execution of motor plans.

Repetitive sequencing of actions is a prevalent phenomenon in behavioral sequences, particularly observed in animal vocalizations. Notably, many species of birds construct their songs through the iterative repetition of specific syllables, followed by a sequence featuring a distinct syllable. Elementary models elucidating birdsong production reveal that these reiterated syllables can be produced through periodic physiological instructions governing respiration and the configuration of the vocal organ. The generation of different syllables can be achieved by modifying the relative phases of these instructions or other features such as their periods.

Extensive research has been dedicated to the avian song system, with a consensus emerging that a specific brain area within the telencephalon, known as HVC (proper name, formerly stood for high vocal center), plays a pivotal role in temporal pattern generation. Moreover, it is established that the auditory pathway projects into this brain region. Consequently, it is reasonable to inquire whether auditory feedback plays a crucial role in sustaining syllable repetitions in certain bird species. Corroborating this hypothesis, experiments with Bengalese finches indicate that deafening leads to a reduction in syllable repetitions. For the case of birdsong, the study of a computational model showed that syllable repeats are initially sustained by auditory feedback [21]. However, periodic patterns of activity are pervasive in nature and manifest in a variety of animal behaviors [20, 22]. The hypothesis posits that, in certain contexts, rhythmic activity emerges from the collective behavior of neural oscillators, which generate periodic signals driving the animal's motor systems [11].

A neural oscillator, a simple neural architecture capable of instigating periodic activity within the brain, comprises a pair of interconnected excitatory and inhibitory neurons [7]. When a local population of neurons exhibits comparable dynamics and

68 functionality, extending the neural oscillator model from a pair of neurons to a pair of
 69 populations using mean field theory becomes advantageous [9, 16]. The comprehen-
 70 sion of these oscillators' dynamics and their interaction with other components of the
 71 nervous system, such as those conveying sensory feedback, is crucial for unraveling
 72 the mechanisms underpinning the generation of periodic behavior. Mathematically,
 73 this endeavor necessitates a thorough review of the impact of incorporating a delayed
 74 function of the variables used to describe the problem in the model elucidating the
 75 origin of the oscillations.

76 This issue has been previously investigated in [15], where the impact of delayed
 77 feedback on a basic oscillator is explored. This seminal work modeled the oscillator
 78 as the normal form of a Hopf bifurcation, which is a simple representation of how
 79 oscillations arise in nonlinear systems. In a Hopf bifurcation, oscillations emerge
 80 with zero amplitude and a distinct frequency. Building upon this foundation, our
 81 study extends the previous research by examining the effects of delayed feedback
 82 in proximity to global bifurcations. Furthermore, we investigate this problem within
 83 the framework of an interpretable model for neural oscillators.

84 In computational neuroscience, the Wilson-Cowan model [19] delineates the
 85 dynamics governing interactions among populations of elementary excitatory and
 86 inhibitory model neurons. Originating from the collaborative work of Hugh R. Wil-
 87 son and Jack D. Cowan, this model has found widespread application in neuronal
 88 population modeling, with various adaptations gaining prominence. Notably, the
 89 model holds historical significance for its utilization of phase plane methods and
 90 numerical solutions to elucidate the responses of neuronal populations to stimuli.

91 A distinctive feature of the Wilson-Cowan model is its depiction of the interplay
 92 between a population that stimulates the neurons it connects to and a population that
 93 inhibits its efferents (the neurons it connects to). As a consequence of this interaction,
 94 a common dynamical outcome is the emergence of oscillations. Oscillations within
 95 a Wilson-Cowan model can emerge not only through local bifurcations like Hopf
 96 bifurcations but also through global bifurcations, exemplified by the Saddle-Node
 97 In Limit Cycle bifurcation (SNILC). In this type of bifurcation, a local Saddle-Node
 98 bifurcation takes place, but since the unstable manifold of the saddle is part of the
 99 stable manifold of the attractor, the disappearance of the fixed points gives rise to a
 100 periodic solution with infinite period at the bifurcation (for this reason, SNIPER is
 101 an alternative name for this bifurcation; it stands for Saddle Node in Infinite Period).
 102 Notice that the values of the vector field in the region of the phase space where the
 103 two fixed points collapsed will be close to zero. Therefore, the periodic trajectory
 104 will be slow (critical slowing down phenomena) in that region of the phase space.
 105 Consequently, the oscillations exhibit a composite structure, comprising both fast
 106 and slow components. This distinctive feature sets them apart from simple harmonic
 107 oscillations. Another consequence is that the periodic solutions being born in these
 108 bifurcations contain a rich spectral content.

109 The richness of the dynamics in the Wilson-Cowan oscillator suggests that to com-
 110 prehend the integration of a sensorimotor effect, translated mathematically through
 111 the inclusion of a delay term, one must delve beyond the impact of such terms
 112 on a simple Hopf oscillator. For this reason, in this chapter, we will scrutinize the

These bifurcation types are closely related to neuronal excitability classes, such as Type I and Type II, as described in [12].

113 bifurcations inherent in the dynamics of a Wilson-Cowan oscillator and explore the
 114 repercussions of introducing delayed terms to the model when it is close to a SNILC
 115 bifurcation. By incorporating these delays, our goal is to delve into the potential
 116 dynamics that emerge when the onset of periodic motor control integrates with sen-
 117 sory feedback. The inclusion of delay in this context signifies the cumulative time
 118 required for motor behavior to undergo sensory integration and subsequently feed
 119 back into the motor program.

120 This chapter is structured as follows: Sect. 2 revisits a study conducted by Ramana
 121 Reddy et al. [15] that investigates the effects of time-delayed linear and nonlinear
 122 feedback on the dynamics of a single Hopf bifurcation oscillator. In Sect. 3, we
 123 present a comprehensive analysis of the proposed model, including a phase plane
 124 analysis that examines various dynamical regimes. Furthermore, we provide a com-
 125 plete bifurcation map of the system when the delayed term is omitted. Section 4
 126 explores the influence of delayed feedback on the model. We construct a map that
 127 illustrates the range of periodic solutions in a delay-parameter space (a $K \times \tau$ space
 128 where K represents the amplitude of a delayed feedback and τ its delay-time lag).
 129 Our findings reveal increased complexity due to the introduction of a delay-term
 130 exhibiting period-doubling bifurcations, hysteresis, and phase-locking to a spectrum
 131 of subharmonic solutions. Finally, Sect. 5 summarizes the key findings and implica-
 132 tions of our study. Additionally, we discuss future research directions, including a
 133 biological perspective on oscillatory neural activity and periodic patterns observed
 134 in animal behavior.

135 2 The Effect of Feedback on Systems Close to Hopf 136 and Saddle-Node-in-Limit-Cycle Bifurcations

137 Normal forms are the simplest equations consistent with a linear singularity, where
 138 simple refers to the minimal number of monomial terms in the vector field up to a
 139 given order. For the case of a Hopf bifurcation, the qualitative change in the flow
 140 being the birth of a limit cycle of zero amplitude and finite frequency, the normal
 141 form for a complex variable depending on time $Z(t)$ reads as follows:

$$142 \quad \dot{Z}(t) = (a + i\omega - |Z(t)|^2)Z(t), \quad (1)$$

143 where a is a real constant and ω denotes the frequency at which oscillations arise in
 144 the absence of feedback. For its simplicity, it serves as a widely utilized dynamical
 145 system for representing periodic behavior. In [15], the authors introduce a feedback
 146 term to the system as follows:

$$147 \quad \dot{Z}(t) = (a + i\omega - |Z(t)|^2)Z(t) - KZ(t - \tau), \quad (2)$$

148 where K represents the amplification factor of the delayed term, and τ corresponds to
 149 the time delay. The delayed feedback term, $KZ(t - \tau)$, accounts for the contribution
 150 of the system's activity at time $t - \tau$ to its behavior at time t , weighted by the factor
 151 K . When $K = 0$, the system exhibits a stable limit cycle with an amplitude of \sqrt{a}
 152 and an angular frequency of ω .

153 By expressing the system in polar coordinates and setting $a = 1$, we can rewrite
 154 the equations as:

$$155 \quad \dot{r}(t) = [1 - r^2(t)]r(t) - Kr(t - \tau) \cos[\theta(t - \tau) - \theta(t)] \quad (3)$$

$$156 \quad 157 \quad \dot{\theta}(t) = \omega - K \frac{r(t - \tau)}{r(t)} \sin[\theta(t - \tau) - \theta(t)]. \quad (4)$$

158 Considering solutions of the form $Z(t) = Re^{i\Omega t}$ for $\tau > 0$, we anticipate solutions
 159 in polar form as $r(t) = R$ and $\theta(t) = \Omega t$, where R and Ω are real constants. Thus,
 160 we can deduce the mathematical conditions for the amplitude and frequency of the
 161 oscillator in the periodic solution:

$$162 \quad R = \sqrt{1 - K \cos(\Omega\tau)} \quad (5)$$

$$163 \quad 164 \quad \Omega = \omega + K \sin(\Omega\tau) \quad (6)$$

165 Graphically, Eq. (6) reveals that the frequencies of the solutions correspond to the
 166 intersection points of the identity function $f(\Omega) = \Omega$ and $g(\Omega) = \omega + K \sin(\Omega\tau)$.
 167 Under specific conditions of ω and τ , multiple intersections exist, indicating the
 168 presence of multiple periodic solutions. An example demonstrating this phenomenon
 169 is illustrated in Fig. 1.

170 Indeed, the inclusion of feedback imposes a significant constraint on the frequencies
 171 at which periodic oscillations can exist. This is in stark contrast to the situation
 172 without feedback, where a limit cycle can exist for any value of Ω . The introduction
 173 of delayed feedback introduces a condition that restricts the possible frequencies
 174 at which sustained oscillations can occur. This constraint arises from the interplay
 175 between the intrinsic frequency of the system, represented by ω , and the influence of
 176 the delayed feedback term. As a result, the system's dynamics exhibits a more intricate
 177 behavior, characterized by a limited range of frequencies that support sustained
 178 oscillations.

179 In situations where multiple stable solutions coexist for a given parameter set, the
 180 system's evolution towards a specific stable solution depends on the initial condition.
 181 These initial condition can be conceptualized as a vector with infinitely many
 182 complex elements, representing the system's states for every t between $-\tau$ and 0 (if
 183 we start integrating from $t = 0$).

184 Numerical simulations have confirmed the presence of hysteresis phenomena
 185 (dependence of the state of a system on its history) associated with the existence
 186 of multiple stable periodic solutions. Depending on the initial condition, the system
 187 may converge towards one particular stable solution or another, leading to distinct

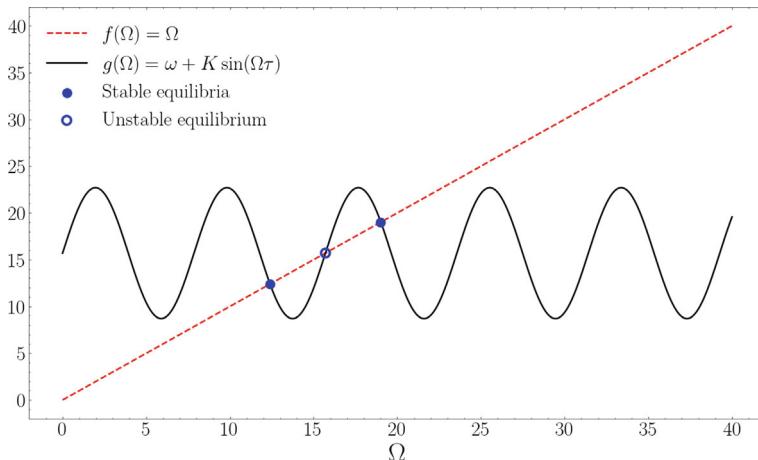


Fig. 1 Periods of rhythmic solutions in Eq.(1) are given by the intersection of $f(\Omega)$ and $g(\Omega)$. In this example, two stable and one unstable solutions exists with parameters $\omega = 15.7$, $K = 7$, $\tau = 0.8$

exists -> exist

188 dynamical behaviors and trajectories. This behavior highlights the sensitivity of the
 189 system to its initial state and the rich complexity arising from the coexistence of
 190 multiple stable solutions.

191 The study of under which conditions a system's vector field undergoes a topologi-
 192 cal change can be addressed by bifurcation theory. For a two-dimensional dynamical
 193 system described by its associated Jacobian matrix (the matrix of all the system's
 194 first-order partial derivatives), specific conditions determine the occurrence of the
 195 Saddle-Node and Hopf bifurcations. The Saddle-Node bifurcation condition is given
 196 by $D = 0$, where D represents the determinant of the Jacobian matrix. When $D = 0$,
 197 a Saddle-Node bifurcation occurs, resulting in the creation or destruction of a pair
 198 of equilibrium points.

199 On the other hand, the Hopf bifurcation condition is satisfied when $T = 0$ and
 200 $D > 0$, leading to the birth or annihilation of a limit cycle, where T stands for the
 201 trace of the Jacobian matrix. These conditions provide insights into the behavior and
 202 qualitative changes that occur in the system as its parameters are varied, helping to
 203 understand the occurrence of bifurcations and the emergence of different dynamical
 204 regimes.

205 Unlike the Hopf bifurcation, which typically gives rise to periodic solutions with
 206 a well defined finite frequency, the SNILC bifurcation exhibits a distinct behavior
 207 characterized by the emergence of periodic solutions which are born with infinite
 208 period. This results in a diverse set of periodic behaviors that span a broad range
 209 of time scales [4] for parameters in the vicinity of the bifurcation. This wide range
 210 of periods adds richness and complexity to the system dynamics, offering a broader
 211 repertoire of possible behaviors compared to other bifurcations.

212 Notice that the SNILC bifurcation is global in nature. Hence, we will explore the
 213 effect of feedback on a simple and pertinent system of equations that, with minimal
 214 complexity, is able to describe neural oscillations born in SNILC bifurcations.

215 Now that we know some of the features that usually emerge in delayed feedback
 216 systems, let's take a step back to gently introduce the Wilson-Cowan neural oscillator
 217 model. In Sect. 3 we present the system and describe it in terms of bifurcation theory
 218 for the ordinary form (i.e. with the delay term multiplied by zero). Then in Sect. 4,
 219 we explore in depth the effects of a delayed copy of the system's activity feeding
 220 back into itself while varying the delay related parameters. The use of this set of
 221 equations allows a smooth export to the realm of neuroscience, where sensorimotor
 222 integration of major importance.

223 3 The Dynamics of Neural Oscillators

224 We start reviewing the solutions of a Wilson-Cowan oscillator, which is a system
 225 designed to describe the dynamics of two interacting populations of neurons: exci-
 226 tatory and inhibitory. Our goal is to modify the model in order to incorporate the
 227 effect of feedback, which can be interpreted as the sensory processing of changes
 228 resulting from the system's own activity (i.e., sensory feedback). To achieve this, we
 229 introduce a delayed copy of one of the variables as an input to the system:

$$230 \quad \begin{cases} \dot{x} = \mu(-x + S(\rho_x + ax - by)) \\ \dot{y} = \mu(-y + S(\rho_y + cx - dy + Kx(t - \tau))) \end{cases} \quad (7)$$

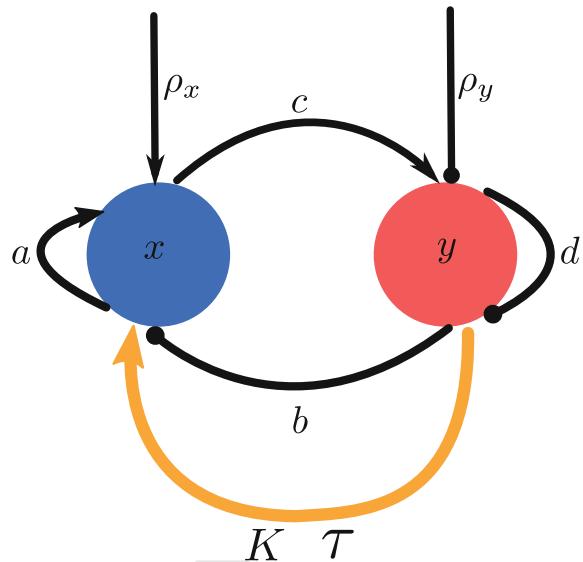
232 The state variables $x = x(t)$ and $y = y(t)$ represent the excitatory and inhibitory
 233 neural activities, respectively. The parameter μ governs the intrinsic time scale of
 234 the population's average firing rate. The sigmoid function $S(x) = \frac{1}{1+e^{-x}}$ captures the
 235 processing of inputs from both populations, weighted by synaptic strength coeffi-
 236 cients a, b, c , and d , as well as external stimuli ρ_x and ρ_y . The time-delayed copy
 237 of the excitatory activity $x(t - \tau)$, serves as an input to the inhibitory population at
 238 time t . This accounts for the feedback effect on the neural dynamics in our model.
 239 This delayed input is multiplied by a factor K , representing an amplification factor.
 240 Note that the linear copy $x(t - \tau)$ is the simplest way to introduce delayed feedback
 241 into the system. Figure 2 provides a graphical representation of the described model.

242 Consider $K = 0$ (the ordinary non-delayed version of the system). In this case,
 243 Eq. (7) simply reduces to:

$$244 \quad \begin{cases} \dot{x} = \mu(-x + S(\rho_x + ax - by)) \\ \dot{y} = \mu(-y + S(\rho_y + cx - dy)) \end{cases} \quad (8)$$

246 This dynamical system serves as a model for the emergence of periodic patterns
 247 in the absence of sensory feedback. The condition for equilibrium is given by both

Fig. 2 Illustration of the delayed Wilson-Cowan model depicting excitatory (blue circle) and inhibitory (red circle) populations of neurons, and their activities denoted by x and y respectively. The synaptic parameters of the model, denoted by a , b , c , and d , as well as the input parameters ρ_x and ρ_y , are shown. Additionally, the delay-related parameters K and τ are indicated



248 derivatives being equal to zero. So, a fixed point defined as $P^* = (x^*, y^*)$ must
 249 satisfy the condition:

$$250 \quad \begin{cases} x^* = S(\rho_x + ax - by) \\ y^* = S(\rho_y + cx - dy) \end{cases}. \quad (9)$$

251

252 Therefore, the Jacobian matrix corresponding to Eq. (8), denoted by J , which
 253 evaluated at the fixed points reads as:

$$254 \quad J = \begin{bmatrix} -1 + aS'(\rho_x + ax - by) & -bS'(\rho_x + ax - by) \\ cS'(\rho_y + cx - dy) & -1 - dS'(\rho_y + cx - dy) \end{bmatrix}. \quad (10)$$

255

256 J can be expressed in a more convenient form as shown, addressing the fact that the
 257 derivative of the sigmoid function, S' , is equal to $S(1 - S)$ (full details on [7]):

$$258 \quad J = \begin{bmatrix} -1 + ax(1 - x) & -bx(1 - x) \\ cy(1 - y) & -1 - dy(1 - y) \end{bmatrix}. \quad (11)$$

259

260 The Saddle-Node bifurcation occurs when the determinant of the evaluated Jaco-
 261 brian matrix becomes zero. However, the impact of this bifurcation on the system
 262 depends on factors beyond the mere change in sign of the determinant.

263 The occurrence of a Saddle-Node bifurcation does not necessarily imply the cre-
 264 ation or destruction of a limit cycle. Determining whether a limit cycle is formed
 265 or destroyed as a result of the bifurcation depends on a comprehensive analysis of
 266 the system's global behavior, taking into account other components and factors. This

particular case of Saddle-Node bifurcation is referred to as Saddle-Node in Limit Cycle bifurcation (SNILC).

In this section we describe the bifurcation diagram (a plot where multiple bifurcation curves are depicted in a parameter space, in this case the $\rho_x \times \rho_y$ space) of the model for the case of $K = 0$ and specific parameter values ($a = b = c = 10$, $d = -10$). These particular parameter values are selected to ensure that the boundaries of the oscillatory regime in the parameter space correspond to SNILC bifurcation curves and none of them to Hopf bifurcations.

Phase portraits provide a concise graphical representation of the qualitative behavior of the solutions of a system under specific parameter values [17]. When the system undergoes a bifurcation as a result of a change of parameters, the corresponding phase portraits exhibit distinct qualitative characteristics.

In our analysis, we will focus on the following features depicted in the phase portraits:

- The positions of fixed points
- The presence of closed orbits or limit cycles
- Trajectories of the system, which provide insights into the stability of fixed points and the direction of flow within the system.

As shown in Fig. 3, the central region of the parameter space displays distinctive periodic behavior characterized by limit cycle dynamics. This region is enclosed by SNILC bifurcation curves. In the proximity of the bifurcation, the period of a solution gradually increases as we approach the bifurcation point. Upon crossing the SNILC bifurcation, the system transitions into a quiescent regime, where sustained oscillations cease to exist.

Phase portraits were obtained by numerically integrating the system and analytically finding the fixed points. A representative phase portrait that captures the qualitative dynamics is drawn for each of the relevant parameter space regions delimited by bifurcation curves given by the parameters of that region. To provide a comprehensive understanding of the various dynamic regimes, we conducted an exploration along both local and global bifurcation curves.

In Fig. 3 we show both the local bifurcation curves and the global ones (including the homoclinic bifurcation curve depicted in blue). It is worth mentioning that some of the black curves depicting Saddle-Node bifurcations also correspond to global bifurcations, since some of them are SNILC.

So far, we have focused on the qualitative differences observed in the system's dynamics, evaluated in different regions of the $\rho_x \times \rho_y$ parameter space. However, it is important to note that in the vicinity of a bifurcation leading to qualitative changes, there exists a spectrum of quantitatively distinct solutions. Specifically, when the system is close to a SNILC bifurcation and a simple limit cycle is present, the periods of the solutions span a wide range even with small variations in the parameters. This is illustrated in Fig. 4, where we observe the variation in periods for different parameter values.

Having completed a comprehensive qualitative analysis of the dynamic regimes in the system, we are now poised to delve into the investigation of the effects of

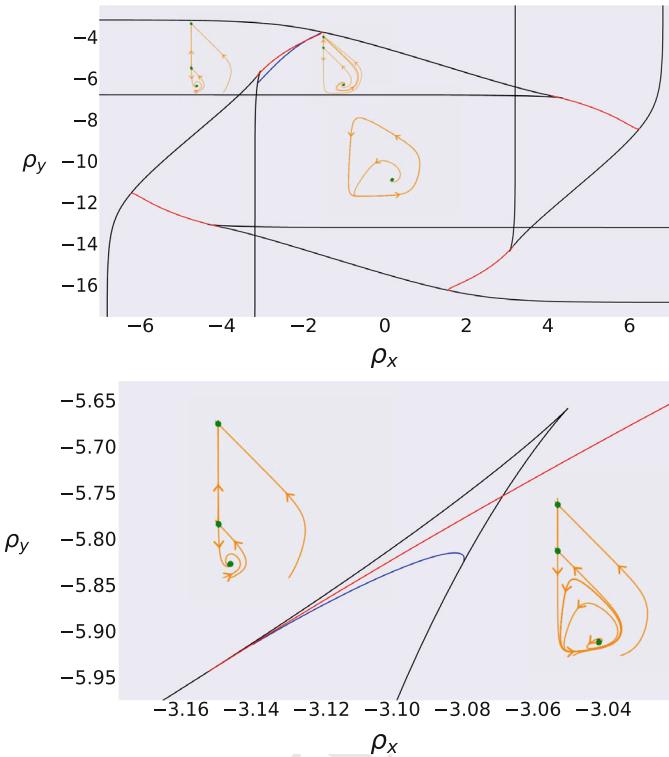


Fig. 3 Wilson-Cowan bifurcation map. Lower panel is a zoom of the top panel. The Saddle-Node bifurcation curves are represented in black, the Hopf bifurcation curves in red and the Homoclinic bifurcation curves in blue. Phase portraits (in orange) corresponding to the different delimited regions are represented inside the regions. Qualitatively equal phase portraits (as consequence of \rightarrow "as a consequence" of symmetry) and those with 5 fixed points were omitted. It should be noted that, for simplicity, neither the node-spiral transitions nor the double limit cycle bifurcation has been represented in the map. Likewise, the parts of the Saddle-Node bifurcation that are also SNILC have not been distinguished, nor have the subcritical and supercritical parts of the Hopf bifurcation

311 delayed feedback. By incorporating this additional factor into the problem, we aim
 312 to gain insights into how it influences the system's behavior. This next section will
 313 explore the intriguing interplay between delayed feedback and the existing dynamic
 314 regimes, shedding light on the complex dynamics that emerge from this interaction.

315 4 The Effect of Feedback on Neural Oscillators

316 In this section, we introduce feedback into the neural oscillator model, following a
 317 similar approach as in previous studies [13–15]. By incorporating a non-zero value
 318 for the feedback parameter K in Eq.(7), the system becomes sensitive to its own

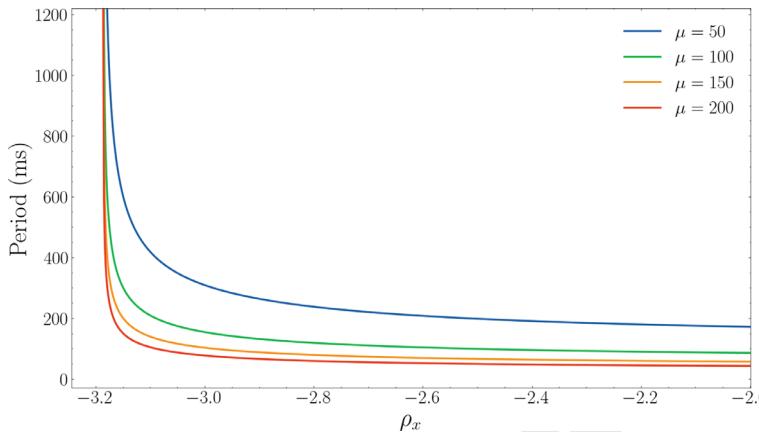


Fig. 4 Period against ρ_x for multiple values of μ in Eq. (7) with $a = b = c = 10$, $d = -10$, $\rho_y = -9$ and $K = 0$. Note that solutions' periods tend to infinity when ρ_x tends to the critical value for the SNILC bifurcation $\rho'_x \approx -3.2$

319 past states. To capture this effect computationally, we employ a queue-like structure
 320 to store the system states from $t - \tau$ to t , where τ represents the time delay. This
 321 structure is updated at each step of the numerical integration, which is performed
 322 using a fourth-order delay-adapted Runge-Kutta method. Additionally, we include
 323 an option to consider the state vector from the immediately previous computation in
 324 consecutive simulations, providing continuity in the analysis.

325 For the subsequent analysis, we will fix the non-delay parameters of Eq. (7) as
 326 described in the caption of Fig. 5, which guarantees the proximity to a SNILC. We
 327 then proceeded to explore the dynamics as K and τ are varied.

328 In the absence of feedback ($K = 0$), the system exhibits periodic solutions with
 329 a period duration of 65 ms. To explore the effects of feedback, we employed the
 330 modified fourth-order Runge-Kutta method discussed earlier to numerically compute
 331 the trajectories of the system. By integrating the equations over a wide range of
 332 K and τ values, we obtained the corresponding trajectories and investigated their
 333 characteristics. To comprehensively analyze the impact of feedback, we explored a
 334 subset of the $K \times \tau$ parameter space, where K ranges from 3 to 10 and τ ranges
 335 from 40 to 70 ms. By doing so, we aim to uncover the emerging complexity in the
 336 delayed version of the model.

337 The incorporation of a delay allows us to retain and analyze the previous states
 338 of the system in a “queue” structure. With this capability, we can traverse the $K \times \tau$
 339 space in all four directions (ascending and descending values of K and τ , while
 340 keeping the other parameter constant) and investigate how these variations lead to
 341 the generation of qualitatively and/or quantitatively different periodic solutions. By
 342 examining the trajectories obtained for each K and τ combination, we can gain
 343 insights into the nature and diversity of the system’s dynamics.

344 It is worth noting that the analysis of the solutions is performed disregarding
 345 any transients that may appear when increasing or decreasing a parameter between
 346 consecutive integrations. Since the length of the initial condition vector grows for
 347 consecutive integrations when τ is increasing, the stored states of the system must
 348 be long enough to avoid running short of stored values for $x(t - \tau)$ and $y(t - \tau)$.

349 At each point in the parameter space grid, we applied an algorithm to calculate the
 350 periodicity of the solution. This algorithm involved tracking the number of rotations
 351 in the trajectory until it repeated itself, with a predefined threshold for the difference
 352 between $f(t)$ and $f(t + T)$ for multiple values of t , where T represented a candidate
 353 period duration. To be precise, the algorithm consists in the following steps and can
 354 be implemented in the desired programming language:

- 355 • A variable *rotationCounter* is initialized. At each point in the phase plane it grows
 356 by the value corresponding to the angular velocity measured over the vector field
 357 divided by 2π .
- 358 • For a given (x, y) time series (a trajectory), we obtain a time series for *rotation-
 359 Counter*. Every integer *rotationCounter* (up to the desired maximum periodicity, in
 360 our case 8) in the time series becomes a candidate to be the n of the n -periodicity of
 361 the solution. T is the candidate period duration associated to that *rotationCounter*.
- 362 • Each of the *rotationCounter* candidates gets a score proportional to the average of
 363 the distances of $(x(t), y(t))$ and $(x(t + T), y(t + T))$ for a representative amount
 364 of times t .
- 365 • The minimum *rotationCounter* whose score is less than a fixed threshold is
 366 considered the n -period of the solution. That's the output of the algorithm.
- 367 • If no integer *rotationCounter* gets a score below the threshold, the algorithm
 368 outputs *null*.
- 369 • Precision can be increased by increasing the number of evaluated points in time
 370 to compute the distances and/or decreasing the threshold (it must be taken into
 371 account that decreasing too much the threshold without increasing accordingly
 372 the numerical precision of the integrator could produce undesired *null* outputs).

373 It must be noted that the classification is purely topological and not temporal. This
 374 means, for instance, that n -periodic solutions might have very different time periods
 375 for the same n . It also means that, for example, a 2-periodic solution may correspond
 376 to a longer time period than a 3-periodic one.

377 To visually represent our findings, we assigned integer values to classify the
 378 periodicity of the solutions at each explored grid coordinate of the parameter space.
 379 We used a color-coding scheme where unique colors were assigned to integer values
 380 up to 8. By superimposing the resulting areas from the four plots with transparency,
 381 we created a composite visualization shown in Fig. 5. White regions indicate cases
 382 where no periodicity was detected by the algorithm. These regions may correspond
 383 to higher period, quasiperiodic or chaotic solutions.

384 This approach allows us to gain insight into the presence and characteristics of
 385 periodic solutions across the $K \times \tau$ parameter space, providing a comprehensive
 386 view of the system's harmonic structure that emerges as a consequence of the applied

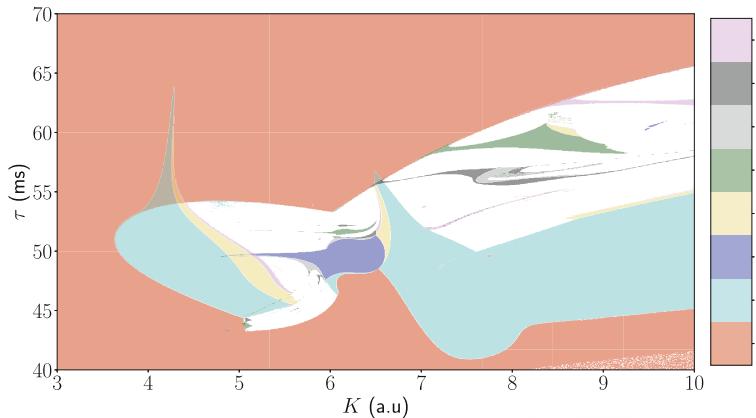


Fig. 5 Harmonic bifurcation map in delay-parameters space ($K \times \tau$) with $\rho_x = -2.3$, $\rho_y = -9$ and $\mu = 150$. Each colored region is linked to a periodic solution of n -periodicity, being n an integer between 1 and 8. Transparency enables a way to visualize bistable zones since the plot was constructed by merging the areas of n -periodicity obtained by determining the period of the solutions of the system when integrated for the $K \times \tau$ parameter space explored in the four directions (increasing or decreasing each delay-related parameter). A rich spectrum of subharmonic solutions is observed. Uncolored regions are those where the solution was not n -periodic for any $n \leq 8$, i.e. higher periods, quasiperiodic or chaotic solutions

387 feedback. We observe a rich subharmonic structure, meaning that the periods of the
 388 oscillatory solutions of the system are integer multiples of a fundamental. Values
 389 below $K = 3$ and $\tau = 40$ ms are omitted in the plot because there are only period-1
 390 solutions.

391 Figure 5 displays the regions where specific periodic solutions occur and where
 392 pairs of different n -periodic stable solutions coexist (so transparency allows to iden-
 393 tify bistable regions as those with two colors). The color-coded map enables the
 394 identification of adjacent zones and their colors, allowing us to discern the per-
 395 mitted transitions between periodic solutions and their locations. This plot bears
 396 resemblance to Arnold's tongues observed in the study of the circle map [2].

397 The presence of multistability, where multiple periodic stable solutions coexist
 398 for certain parameter combinations, is a prominent feature observed in our results.
 399 This finding is consistent with previous research conducted on oscillator systems
 400 with time delay [8]. The identification and characterization of multistability adds to
 401 our understanding of the complex dynamics exhibited by the delayed version of the
 402 model.

403 The observed increase in complexity and the emergence of rich solutions in our
 404 model can be attributed solely to the introduction of a simple delay term, represented
 405 by a linear copy of the value of x at a past time $t - \tau$. No other modifications were
 406 made to the model. This highlights the profound impact of delayed feedback on the
 407 dynamics of the system.

408 Since pairs of adjacent areas in which one doubles the periodicity of the other
409 are extensively well represented in Fig. 5, we may state that the presence of period-
410 doubling bifurcations is a remarkable emergent feature of the system.

411 To further explore the effects of delay, it would be interesting for future investiga-
412 tions to consider the influence of nonlinear delayed terms. Nonlinearities in the
413 delay term can introduce additional complexities and potentially lead to even richer
414 dynamics.

415 It is important to note that the inclusion of a delay term deviates from the prin-
416 ciples of traditional dynamical systems theory, where a finite set of initial conditions
417 determines the unique fate of the system. In the case of a differential equation with
418 delays, the problem becomes infinite-dimensional, as it requires a continuous range
419 of states as initial condition to integrate the equations accurately. This departure
420 from finite-dimensional dynamics adds another layer of complexity to the analysis
421 and understanding of the system's behavior.

422 5 Discussion

423 The Wilson-Cowan model is widely recognized as a valuable tool for investigating
424 the dynamics of neural populations. To gain a comprehensive understanding of this
425 model, it is crucial to examine its behavior under various conditions. In this study,
426 we specifically delved into the influence of time-delayed feedback on the dynamics
427 of the Wilson-Cowan oscillator model. Our primary focus was on the emergence of a
428 subharmonic structure in close proximity to a SNILC bifurcation. By exploring this
429 aspect, we aimed to shed light on the intricate relationship between delayed feedback
430 and the complex dynamics observed in neural systems.

431 The inclusion of the simplest feedback term in the Wilson-Cowan model revealed
432 a complex subharmonic structure. It has been shown that multiple stable solutions
433 exists for some parameter values. To which of the stable solutions the system locks
434 is highly dependent of the previous states (and so, of the direction in which the
435 parameter space is explored). This is a signature of hysteresis because the state of the
436 system is dependent on its history: for two different vectors representing the states
437 of the system between times $t - \tau$ and t , qualitatively different solutions may arise
438 for exactly the same set of parameters.

439 In sensory physiology, phase locking refers to the firing of neurons preferentially
440 at a certain phase of an amplitude-modulated stimulus. The neural oscillator we are
441 modelling is one in which a linear delayed copy of the activity acts as a stimulus
442 feeding back the system. The delay-time may be understood as the phase of a driving
443 force to which the activity may synchronize either in a 1:1 way or as a subharmonic.

444 The implications of our findings extend beyond the realm of neuroscience and can
445 be valuable in diverse fields such as physics and robotics. The complex dynamics
446 observed in this model open up new possibilities for modeling and understanding
447 intricate systems in various domains.

448 As a well-defined subharmonic structure is a characteristic pattern observed in
449 the behavior of many biological systems, our results hold significant implications
450 for both modeling and understanding the underlying mechanisms of these systems.
451 By shedding light on the complex dynamics of the Wilson-Cowan model, our study
452 may contribute to a better understanding of the behavior of biological systems and
453 the potential applications of such models. Experiments to test the predictions could
454 provide insights to the mechanisms that are actually involved in the production of
455 periodical patterns with such characteristics.

456 Many animal behaviors are repeated multiple times over a relatively short period
457 of time. It is likely that such repetitive actions are generated by oscillatory patterns of
458 neural activity. In particular, birdsong is an animal model which is worth exploring
459 under this perspective and has numerous parallels with human speech [3]. In many
460 species, as canaries, the generation of the song involves the generation of periodic
461 gestures, both respiratory and syringeal [10, 18]. The timing of these gestures is
462 believed to be encoded in the HVC telencephalic nucleus. Research has provided
463 evidence of glutamatergic and GABAergic synapses within the HVC, suggesting
464 their involvement in the timing mechanisms of birdsong generation [11].

465 It is also known that HVC works as a relay center for both motor and auditory sig-
466 nals in the production and perception of birdsong [1]. It generates motor commands
467 involved in song generation. Simultaneously, the HVC integrates auditory feedback
468 by processing the auditory signals resulting from the bird's own vocalizations. The
469 relevance of this mechanism varies depending on the degree of development of the
470 HVC nucleus and the specific characteristics of each species.

471 Given the complex nature of birdsong and the involvement of motor and auditory
472 systems, it is reasonable to speculate that some degree of processing delay exists.
473 This delay can arise from various factors, including the time required for the song
474 to be generated, propagated, and processed by the auditory system [5]. Studies have
475 suggested that such delays may be involved in feedback mechanisms that regulate
476 and fine-tune the production of birdsong [5].

477 Understanding the role of delayed feedback in the neural dynamics of birdsong
478 can provide insights into how temporal processing and integration contribute to the
479 generation and perception of complex vocalizations. Further experiments would be
480 necessary to investigate the potential role of the **sub-harmonic** generation mecha-
481 nisms described here in relation to the observed time durations of different syllable
482 gestures.

483 In conclusion, this model not only holds significance within the realm of the neu-
484 roscience of vocal learning but also unveils a broader perspective on sensorimotor
485 integration, a fundamental mechanism that resonates across diverse challenges in
486 animal behavior. Our exploration into the modeling of this phenomenon, particu-
487 larly in the context of two pivotal bifurcations, Hopf and SNILC, serves as a gateway
488 to understanding a spectrum of periodic patterns. By establishing itself as a template,
489 this study opens the door to a comprehensive investigation into sensorimotor integra-
490 tion, transcending specific examples and offering a lens through which the intricacies
491 of this fundamental process can be unravelled in a more universal context.

→ "subharmonic"

AQ2

References

492

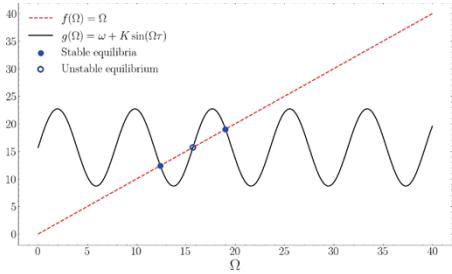
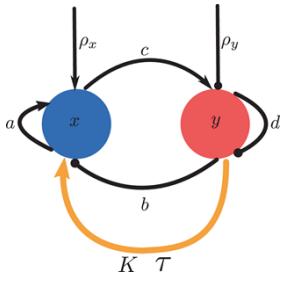
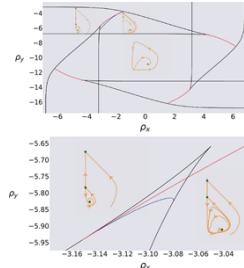
1. Amador, A., Margoliash, D.: Auditory Memories and Feedback Processing for Vocal Learning, pp. 561–575. (2010)
- 494 2. Arnold, V.I.: Small denominators. I. Mapping the circle onto itself. *Izv. Akad. Nauk SSSR Ser. Mat.* **25**, 21–86 (1961)
- 495 3. Doupe, A.J., Kuhl, P.K.: Birdsong and human speech: common themes and mechanisms. *Annu. Rev. Neurosci.* **22**(1), 567–631 (1999)
- 496 4. Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. *SIAM J. Appl. Math.* **46**(2), 233–253 (1986)
- 500 5. Fukushima, M., Margoliash, D.: The effects of delayed auditory feedback revealed by bone conduction microphone in adult zebra finches. *Sci. Rep.* **5**, 03 (2015)
- 501 6. Hodgkin, A.L.: The local electric changes associated with repetitive action in a non-medullated axon. *J. Physiol.* **107**(2), 165–81 (1948) Remove [6] from references
- 503 7. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Applied Mathematical Sciences. Springer, New York (2012)
- 505 8. Kim, S., Park, S.H., Ryu, C.S.: Multistability in coupled oscillator systems with time delay. *Phys. Rev. Lett.* **79**, 2911–2914 (1997)
- 507 9. Kuramoto, Y., Nishikawa, I.: Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities. *J. Stat. Phys.* **49**(3), 569–605 (1987)
- 509 10. Long, M., Fee, M.: Using temperature to analyse temporal dynamics in the songbird motor pathway. *Nature* **456**, 189–194 (2008)
- 511 11. Mooney, R., Prather, J.: The HVC microcircuit: the synaptic basis for interactions between song motor and vocal plasticity pathways. *J. Neurosci. Off. J. Soc. Neurosci.* **25**, 1952–1964 (2005)
- 513 12. Prescott, S.A.: Excitability: Types I, II, and III, pp. 1–7. Springer New York, New York, NY (2013)
- 515 13. Reddy, D., Sen, A., Johnston, G.: Time delay induced death in coupled limit cycle oscillators. *Phys. Rev. Lett.* **80** (1998)
- 517 14. Ramana Reddy, D.V., Sen, A., Johnston, G.L.: Time delay effects on coupled limit cycle oscillators at hopf bifurcation. *Phys. D Nonlinear Phenom.* **129**(1), 15–34 (1999)
- 519 15. Ramana Reddy, D.V., Sen, A., Johnston, G.L.: Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks. *Phys. D Nonlinear Phenom.* **144**(3), 335–357 (2000)
- 521 16. Schuster, H.G., Wagner, P.: A model for neuronal oscillations in the visual cortex. *Biol. Cybern.* **64**(1), 77–82 (1990)
- 523 17. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press (2000)
- 525 18. Suthers, R.A., Margoliash, D.: Motor control of birdsong. *Curr. Opin. Neurobiol.* **12**(6), 684–690 (2002)
- 527 19. Wilson, H., Cowan, J.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. *Kybernetik* **13**, 55–80 (1973)
- 529 20. Winfree, A.T.: The Geometry of Biological Time. Interdisciplinary Applied Mathematics. Springer, New York (2001)
- 531 21. Wittenbach, J.D., Bouchard, K.E., Brainard, M.S., Jin, D.Z.: An adapting auditory-motor feedback loop can contribute to generating vocal repetition. *PLOS Comput. Biol.* **11**(10), 1–29 (2015)
- 533 22. Zeigler, H.P., Marler, P.: Neuroscience of Birdsong. Cambridge University Press (2008)

Author Queries

Chapter 1

Query Refs.	Details Required	Author's response
AQ1	Kindly check and verify that the author name(s) and the identification of the corresponding author(s) are correctly recognized and presented in the correct sequence order and spellings, i.e., given name, middle name/initial, and family name for the authors. In addition, please verify that the E-mail addresses and Affiliation(s) of the corresponding author(s) and co-author(s) shown on the metadata page are valid, and make any necessary amendments if required.	
AQ2	References [6, 12] are given in list but not cited in text. Please cite in text or delete them from list.	

Alternative Texts for Your Images, Please Check and Correct them if Required

Page no	Fig/Photo	Thumbnail	Alt-text Description
6	Fig1		<p>Graph showing two functions: $f(\Omega) = \Omega$ as a red dashed line and $g(\Omega) = \omega + K \sin(\Omega \tau)$ as a black wavy line. The x-axis is labeled (Ω) and the y-axis ranges from 0 to 40. Blue dots indicate stable equilibria, and blue circles indicate unstable equilibrium.</p>
8	Fig2		<p>Flow chart depicting a system with two nodes labeled "x" and "y." Node "x" is blue, and node "y" is red. Arrows indicate interactions: "a" loops back to "x," "b" connects "x" to "y," "c" connects "y" to "x," and "d" loops back to "y." Additional arrows labeled "ρ_x" and "ρ_y" point into nodes "x" and "y," respectively. An orange arrow labeled "Kt" loops from "y" back to "x."</p>
10	Fig3		<p>X-Y chart displaying two panels with plots of (ρ_x) on the x-axis and (ρ_y) on the y-axis. The top panel shows multiple curves in black, red, and blue, with orange arrows indicating direction and small insets of spiral patterns. The bottom panel is a zoomed-in view of a section from the top panel, highlighting detailed interactions between the curves and additional spiral patterns. Key features include intersections and directional flow, emphasizing dynamic relationships between (ρ_x) and (ρ_y).</p>

Page no	Fig/Photo	Thumbnail	Alt-text Description
11	Fig4	<p>A line graph showing the relationship between Period (ms) on the y-axis (ranging from 0 to 1200) and ρ_x on the x-axis (ranging from -3.2 to -2.0). Four curves are plotted for different values of μ:</p> <ul style="list-style-type: none"> $\mu = 50$ (blue): starts at approximately 1200 ms for $\rho_x = -3.2$ and decreases to about 200 ms at $\rho_x = -2.0$. $\mu = 100$ (green): starts at approximately 1000 ms for $\rho_x = -3.2$ and decreases to about 100 ms at $\rho_x = -2.0$. $\mu = 150$ (orange): starts at approximately 800 ms for $\rho_x = -3.2$ and decreases to about 80 ms at $\rho_x = -2.0$. $\mu = 200$ (red): starts at approximately 600 ms for $\rho_x = -3.2$ and decreases to about 60 ms at $\rho_x = -2.0$. 	Chart showing the relationship between period (ms) and ρ_x with four curves representing different μ values: 50 (blue), 100 (green), 150 (orange), and 200 (red). The period decreases as ρ_x increases from -3.2 to -2.0.
13	Fig5	<p>A contour map showing variations in color representing different data regions across a plane. The x-axis is labeled "K (a.u.)" ranging from 3 to 10, and the y-axis is labeled "τ (ms)" ranging from 40 to 70. The map includes a color legend on the right with multiple colors, each indicating a specific data range. The background is predominantly red with areas of green, blue, and other colors, illustrating distinct data zones.</p>	Contour map showing variations in color representing different data regions across a plane. The x-axis is labeled "K (a.u.)" ranging from 3 to 10, and the y-axis is labeled " τ (ms)" ranging from 40 to 70. The map includes a color legend on the right with multiple colors, each indicating a specific data range. The background is predominantly red with areas of green, blue, and other colors, illustrating distinct data zones.