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The Dynamics of Sensorimotor
Integration

Agustín Carpio Andrada and Gabriel B. Mindlin

Abstract Sensorimotor integration refers to how the sensory feedback originating1

from motor actions influences the generation of motor patterns. From a dynamic AQ12

perspective, this can be understood as the impact of a term in the equations governing3

motor behavior, which is dependent on the variables of the problem in previous4

instances. An important motor pattern is the generation of periodic behavior, and in5

this work, we will discuss the impact of delayed feedback in a system capable of6

displaying these patterns. This question has been addressed when the appearance of7

periodic motor patterns is due to a Hopf bifurcation. Here we review those results,8

and then move to explore the rich emergent dynamics arising in delayed systems near9

a Saddle-Node In Limit Cycle (SNILC) bifurcation. Our results reveal a complex10

subharmonic structure consistent with known activity patterns in multiple fields. We11

also explore potential applications of this dynamic phenomenon.12

1 Introduction13

Over the past few decades, extensive research has been conducted to comprehend the14

neural control of movement. By employing straightforward computational models to15

depict the actions of a single neuron or the collective actions of a neural population, it16

became feasible to construct basic networks capable of generating a diverse range of17

spatio-temporal patterns. These can be interpreted as the physiological instructions18

controlling the biomechanics of some peripheral system.19

Certain networks, characterized as dynamical systems, exhibit the ability to yield20

diverse solutions contingent on specific global parameters. This capability has proven21

instrumental in shedding light on various phenomena, notably contributing to our22
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2 A. C. Andrada and G. B. Mindlin

understanding of distinct gaits observed in locomotion. In the 1970s, physiologists23

drew inspiration from engineering control systems to gain insight into processes24

involving feedback, thereby enhancing the comprehensive description of behavior.25

The behavior of an animal, for instance when it is executing a motor plan, emerges26

from the intricate interplay among its nervous system, its motor morphological struc-27

tures, and the sensory information gathered from its environment. This interaction28

operates bidirectionally, as the environment is also influenced by the animal’s behav-29

ior. The concept of “sensory feedback” encompasses the mechanism through which30

animals perceive and assess the consequences of their actions on the environment.31

In parallel, “sensorimotor integration” involves the process by which motor output,32

or behavior in general, materializes through the interplay between two information33

channels: sensory input processing and motor plan pathways [21].34

The research program is simple to articulate, yet its implementation is not with-35

out challenges, primarily due to the intricacies involved in deciphering the coding36

of sensory information. Within the framework of functionalism in neuroscience, the37

nervous system processes sensory input based on its intended purpose and destina-38

tion. When the goal is perception, the processing may entail feature extraction and39

the amalgamation of inputs from various sensory sources. Conversely, if the sensory40

input is employed to guide the generation of motor commands, it must be interpreted41

in relation to the present state of the motor system and how it may change the course42

of execution of motor plans.43

Repetitive sequencing of actions is a prevalent phenomenon in behavioral44

sequences, particularly observed in animal vocalizations. Notably, many species45

of birds construct their songs through the iterative repetition of specific syllables,46

followed by a sequence featuring a distinct syllable. Elementary models elucidating47

birdsong production reveal that these reiterated syllables can be produced through48

periodic physiological instructions governing respiration and the configuration of the49

vocal organ. The generation of different syllables can be achieved by modifying the50

relative phases of these instructions or other features such as their periods.51

Extensive research has been dedicated to the avian song system, with a consensus52

emerging that a specific brain area within the telencephalon, known as HVC (proper53

name, formerly stood for high vocal center), plays a pivotal role in temporal pattern54

generation. Moreover, it is established that the auditory pathway projects into this55

brain region. Consequently, it is reasonable to inquire whether auditory feedback56

plays a crucial role in sustaining syllable repetitions in certain bird species. Corrob-57

orating this hypothesis, experiments with Bengalese finches indicate that deafening58

leads to a reduction in syllable repetitions. For the case of birdsong, the study of a59

computational model showed that syllable repeats are initially sustained by auditory60

feedback [21]. However, periodic patterns of activity are pervasive in nature and61

manifest in a variety of animal behaviors [20, 22]. The hypothesis posits that, in62

certain contexts, rhythmic activity emerges from the collective behavior of neural63

oscillators, which generate periodic signals driving the animal’s motor systems [11].64

A neural oscillator, a simple neural architecture capable of instigating periodic65

activity within the brain, comprises a pair of interconnected excitatory and inhibitory66

neurons [7]. When a local population of neurons exhibits comparable dynamics and67
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The Dynamics of Sensorimotor Integration 3

functionality, extending the neural oscillator model from a pair of neurons to a pair of68

populations using mean field theory becomes advantageous [9, 16]. The comprehen-69

sion of these oscillators’ dynamics and their interaction with other components of the70

nervous system, such as those conveying sensory feedback, is crucial for unraveling71

the mechanisms underpinning the generation of periodic behavior. Mathematically,72

this endeavor necessitates a thorough review of the impact of incorporating a delayed73

function of the variables used to describe the problem in the model elucidating the74

origin of the oscillations.75

This issue has been previously investigated in [15], where the impact of delayed76

feedback on a basic oscillator is explored. This seminal work modeled the oscillator77

as the normal form of a Hopf bifurcation, which is a simple representation of how78

oscillations arise in nonlinear systems. In a Hopf bifurcation, oscillations emerge79

with zero amplitude and a distinct frequency. Building upon this foundation, our80

study extends the previous research by examining the effects of delayed feedback81

in proximity to global bifurcations. Furthermore, we investigate this problem within82

the framework of an interpretable model for neural oscillators.83

In computational neuroscience, the Wilson-Cowan model [19] delineates the84

dynamics governing interactions among populations of elementary excitatory and85

inhibitory model neurons. Originating from the collaborative work of Hugh R. Wil-86

son and Jack D. Cowan, this model has found widespread application in neuronal87

population modeling, with various adaptations gaining prominence. Notably, the88

model holds historical significance for its utilization of phase plane methods and89

numerical solutions to elucidate the responses of neuronal populations to stimuli.90

A distinctive feature of the Wilson-Cowan model is its depiction of the interplay91

between a population that stimulates the neurons it connects to and a population that92

inhibits its efferents (the neurons it connects to). As a consequence of this interaction,93

a common dynamical outcome is the emergence of oscillations. Oscillations within94

a Wilson-Cowan model can emerge not only through local bifurcations like Hopf95

bifurcations but also through global bifurcations, exemplified by the Saddle-Node96

In Limit Cycle bifurcation (SNILC). In this type of bifurcation, a local Saddle-Node97

bifurcation takes place, but since the unstable manifold of the saddle is part of the98

stable manifold of the attractor, the disappearance of the fixed points gives rise to a99

periodic solution with infinite period at the bifurcation (for this reason, SNIPER is100

an alternative name for this bifurcation; it stands for Saddle Node in Infinite Period).101

Notice that the values of the vector field in the region of the phase space where the102

two fixed points collapsed will be close to zero. Therefore, the periodic trajectory103

will be slow (critical slowing down phenomena) in that region of the phase space.104

Consequently, the oscillations exhibit a composite structure, comprising both fast105

and slow components. This distinctive feature sets them apart from simple harmonic106

oscillations. Another consequence is that the periodic solutions being born in these107

bifurcations contain a rich spectral content.108

The richness of the dynamics in the Wilson-Cowan oscillator suggests that to com-109

prehend the integration of a sensorimotor effect, translated mathematically through110

the inclusion of a delay term, one must delve beyond the impact of such terms111

on a simple Hopf oscillator. For this reason, in this chapter, we will scrutinize the112
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4 A. C. Andrada and G. B. Mindlin

bifurcations inherent in the dynamics of a Wilson-Cowan oscillator and explore the113

repercussions of introducing delayed terms to the model when it is close to a SNILC114

bifurcation. By incorporating these delays, our goal is to delve into the potential115

dynamics that emerge when the onset of periodic motor control integrates with sen-116

sory feedback. The inclusion of delay in this context signifies the cumulative time117

required for motor behavior to undergo sensory integration and subsequently feed118

back into the motor program.119

This chapter is structured as follows: Sect. 2 revisits a study conducted by Ramana120

Reddy et al. [15] that investigates the effects of time-delayed linear and nonlinear121

feedback on the dynamics of a single Hopf bifurcation oscillator. In Sect. 3, we122

present a comprehensive analysis of the proposed model, including a phase plane123

analysis that examines various dynamical regimes. Furthermore, we provide a com-124

plete bifurcation map of the system when the delayed term is omitted. Section 4125

explores the influence of delayed feedback on the model. We construct a map that126

illustrates the range of periodic solutions in a delay-parameter space (a K × τ space127

where K represents the amplitude of a delayed feedback and τ its delay-time lag).128

Our findings reveal increased complexity due to the introduction of a delay-term129

exhibiting period-doubling bifurcations, hysteresis, and phase-locking to a spectrum130

of subharmonic solutions. Finally, Sect. 5 summarizes the key findings and implica-131

tions of our study. Additionally, we discuss future research directions, including a132

biological perspective on oscillatory neural activity and periodic patterns observed133

in animal behavior.134

2 The Effect of Feedback on Systems Close to Hopf135

and Saddle-Node-in-Limit-Cycle Bifurcations136

Normal forms are the simplest equations consistent with a linear singularity, where137

simple refers to the minimal number of monomial terms in the vector field up to a138

given order. For the case of a Hopf bifurcation, the qualitative change in the flow139

being the birth of a limit cycle of zero amplitude and finite frequency, the normal140

form for a complex variable depending on time Z(t) reads as follows:141

Ż(t) = (a + iω − |Z(t)|2)Z(t), (1)142

where a is a real constant and ω denotes the frequency at which oscillations arise in143

the absence of feedback. For its simplicity, it serves as a widely utilized dynamical144

system for representing periodic behavior. In [15], the authors introduce a feedback145

term to the system as follows:146

Ż(t) = (a + iω − |Z(t)|2)Z(t) − K Z(t − τ), (2)147
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The Dynamics of Sensorimotor Integration 5

where K represents the amplification factor of the delayed term, and τ corresponds to148

the time delay. The delayed feedback term, K Z(t − τ), accounts for the contribution149

of the system’s activity at time t − τ to its behavior at time t , weighted by the factor150

K . When K = 0, the system exhibits a stable limit cycle with an amplitude of
√

a151

and an angular frequency of ω.152

By expressing the system in polar coordinates and setting a = 1, we can rewrite153

the equations as:154

ṙ(t) = [1 − r2(t)]r(t) − Kr(t − τ) cos[θ(t − τ) − θ(t)] (3)155

156

θ̇ (t) = ω − K
r(t − τ)

r(t)
sin[θ(t − τ) − θ(t)]. (4)157

Considering solutions of the form Z(t) = Rei�t for τ > 0, we anticipate solutions158

in polar form as r(t) = R and θ(t) = �t , where R and � are real constants. Thus,159

we can deduce the mathematical conditions for the amplitude and frequency of the160

oscillator in the periodic solution:161

R = √
1 − K cos(�τ) (5)162

163

� = ω + K sin(�τ) (6)164

Graphically, Eq. (6) reveals that the frequencies of the solutions correspond to the165

intersection points of the identity function f (�) = � and g(�) = ω + K sin(�τ).166

Under specific conditions of ω and τ , multiple intersections exist, indicating the167

presence of multiple periodic solutions. An example demonstrating this phenomenon168

is illustrated in Fig. 1.169

Indeed, the inclusion of feedback imposes a significant constraint on the frequen-170

cies at which periodic oscillations can exist. This is in stark contrast to the situation171

without feedback, where a limit cycle can exist for any value of �. The introduction172

of delayed feedback introduces a condition that restricts the possible frequencies173

at which sustained oscillations can occur. This constraint arises from the interplay174

between the intrinsic frequency of the system, represented by ω, and the influence of175

the delayed feedback term. As a result, the system’s dynamics exhibits a more intri-176

cate behavior, characterized by a limited range of frequencies that support sustained177

oscillations.178

In situations where multiple stable solutions coexist for a given parameter set, the179

system’s evolution towards a specific stable solution depends on the initial condi-180

tion. These initial condition can be conceptualized as a vector with infinitely many181

complex elements, representing the system’s states for every t between −τ and 0 (if182

we start integrating from t = 0).183

Numerical simulations have confirmed the presence of hysteresis phenomena184

(dependence of the state of a system on its history) associated with the existence185

of multiple stable periodic solutions. Depending on the initial condition, the system186

may converge towards one particular stable solution or another, leading to distinct187
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6 A. C. Andrada and G. B. Mindlin

Fig. 1 Periods of rhythmic solutions in Eq. (1) are given by the intersection of f (�) and g(�).
In this example, two stable and one unstable solutions exists with parameters ω = 15.7, K = 7,
τ = 0.8

dynamical behaviors and trajectories. This behavior highlights the sensitivity of the188

system to its initial state and the rich complexity arising from the coexistence of189

multiple stable solutions.190

The study of under which conditions a system’s vector field undergoes a topologi-191

cal change can be addressed by bifurcation theory. For a two-dimensional dynamical192

system described by its associated Jacobian matrix (the matrix of all the system’s193

first-order partial derivatives), specific conditions determine the occurrence of the194

Saddle-Node and Hopf bifurcations. The Saddle-Node bifurcation condition is given195

by D = 0, where D represents the determinant of the Jacobian matrix. When D = 0,196

a Saddle-Node bifurcation occurs, resulting in the creation or destruction of a pair197

of equilibrium points.198

On the other hand, the Hopf bifurcation condition is satisfied when T = 0 and199

D > 0, leading to the birth or annihilation of a limit cycle, where T stands for the200

trace of the Jacobian matrix. These conditions provide insights into the behavior and201

qualitative changes that occur in the system as its parameters are varied, helping to202

understand the occurrence of bifurcations and the emergence of different dynamical203

regimes.204

Unlike the Hopf bifurcation, which typically gives rise to periodic solutions with205

a well defined finite frequency, the SNILC bifurcation exhibits a distinct behavior206

characterized by the emergence of periodic solutions which are born with infinite207

period. This results in a diverse set of periodic behaviors that span a broad range208

of time scales [4] for parameters in the vicinity of the bifurcation. This wide range209

of periods adds richness and complexity to the system dynamics, offering a broader210

repertoire of possible behaviors compared to other bifurcations.211
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The Dynamics of Sensorimotor Integration 7

Notice that the SNILC bifurcation is global in nature. Hence, we will explore the212

effect of feedback on a simple and pertinent system of equations that, with minimal213

complexity, is able to describe neural oscillations born in SNILC bifurcations.214

Now that we know some of the features that usually emerge in delayed feedback215

systems, let’s take a step back to gently introduce the Wilson-Cowan neural oscillator216

model. In Sect. 3 we present the system and describe it in terms of bifurcation theory217

for the ordinary form (i.e. with the delay term multiplied by zero). Then in Sect. 4,218

we explore in depth the effects of a delayed copy of the system’s activity feeding219

back into itself while varying the delay related parameters. The use of this set of220

equations allows a smooth export to the realm of neuroscience, where sensorimotor221

integration of major importance.222

3 The Dynamics of Neural Oscillators223

We start reviewing the solutions of a Wilson-Cowan oscillator, which is a system224

designed to describe the dynamics of two interacting populations of neurons: exci-225

tatory and inhibitory. Our goal is to modify the model in order to incorporate the226

effect of feedback, which can be interpreted as the sensory processing of changes227

resulting from the system’s own activity (i.e., sensory feedback). To achieve this, we228

introduce a delayed copy of one of the variables as an input to the system:229

{
ẋ = μ(−x + S(ρx + ax − by))

ẏ = μ(−y + S(ρy + cx − dy + K x(t − τ))
. (7)230

231

The state variables x = x(t) and y = y(t) represent the excitatory and inhibitory232

neural activities, respectively. The parameter μ governs the intrinsic time scale of233

the population’s average firing rate. The sigmoid function S(x) = 1
1+e−x captures the234

processing of inputs from both populations, weighted by synaptic strength coeffi-235

cients a, b, c, and d, as well as external stimuli ρx and ρy . The time-delayed copy236

of the excitatory activity x(t − τ), serves as an input to the inhibitory population at237

time t . This accounts for the feedback effect on the neural dynamics in our model.238

This delayed input is multiplied by a factor K , representing an amplification factor.239

Note that the linear copy x(t − τ) is the simplest way to introduce delayed feedback240

into the system. Figure 2 provides a graphical representation of the described model.241

Consider K = 0 (the ordinary non-delayed version of the system). In this case,242

Eq. (7) simply reduces to:243

{
ẋ = μ(−x + S(ρx + ax − by))

ẏ = μ(−y + S(ρy + cx − dy))
. (8)244

245

This dynamical system serves as a model for the emergence of periodic patterns246

in the absence of sensory feedback. The condition for equilibrium is given by both247
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8 A. C. Andrada and G. B. Mindlin

Fig. 2 Illustration of the
delayed Wilson-Cowan
model depicting excitatory
(blue circle) and inhibitory
(red circle) populations of
neurons, and their activities
denoted by x and y
respectively. The synaptic
parameters of the model,
denoted by a, b, c, and d, as
well as the input parameters
ρx and ρy , are shown.
Additionally, the
delay-related parameters K
and τ are indicated

derivatives being equal to zero. So, a fixed point defined as P∗ = (x∗, y∗) must248

satisfy the condition:249

{
x∗ = S(ρx + ax − by)

y∗ = S(ρy + cx − dy)
. (9)250

251

Therefore, the Jacobian matrix corresponding to Eq. (8), denoted by J , which252

evaluated at the fixed points reads as:253

J =
[−1 + aS′(ρx + ax − by) −bS′(ρx + ax − by)

cS′(ρy + cx − dy) −1 − d S′(ρy + cx − dy)

]
. (10)254

255

J can be expressed in a more convenient form as shown, addressing the fact that the256

derivative of the sigmoid function, S′, is equal to S(1 − S) (full details on [7]):257

J =
[−1 + ax(1 − x) −bx(1 − x)

cy(1 − y) −1 − dy(1 − y)

]
. (11)258

259

The Saddle-Node bifurcation occurs when the determinant of the evaluated Jaco-260

bian matrix becomes zero. However, the impact of this bifurcation on the system261

depends on factors beyond the mere change in sign of the determinant.262

The occurrence of a Saddle-Node bifurcation does not necessarily imply the cre-263

ation or destruction of a limit cycle. Determining whether a limit cycle is formed264

or destroyed as a result of the bifurcation depends on a comprehensive analysis of265

the system’s global behavior, taking into account other components and factors. This266
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The Dynamics of Sensorimotor Integration 9

particular case of Saddle-Node bifurcation is referred to as Saddle-Node in Limit267

Cycle bifurcation (SNILC).268

In this section we describe the bifurcation diagram (a plot where multiple bifur-269

cation curves are depicted in a parameter space, in this case the ρx × ρy space) of the270

model for the case of K = 0 and specific parameter values (a = b = c = 10, d =271

−10). These particular parameter values are selected to ensure that the boundaries272

of the oscillatory regime in the parameter space correspond to SNILC bifurcation273

curves and none of them to Hopf bifurcations.274

Phase portraits provide a concise graphical representation of the qualitative behav-275

ior of the solutions of a system under specific parameter values [17]. When the system276

undergoes a bifurcation as a result of a change of parameters, the corresponding phase277

portraits exhibit distinct qualitative characteristics.278

In our analysis, we will focus on the following features depicted in the phase279

portraits:280

• The positions of fixed points281

• The presence of closed orbits or limit cycles282

• Trajectories of the system, which provide insights into the stability of fixed points283

and the direction of flow within the system.284

As shown in Fig. 3, the central region of the parameter space displays distinctive285

periodic behavior characterized by limit cycle dynamics. This region is enclosed286

by SNILC bifurcation curves. In the proximity of the bifurcation, the period of a287

solution gradually increases as we approach the bifurcation point. Upon crossing the288

SNILC bifurcation, the system transitions into a quiescent regime, where sustained289

oscillations cease to exist.290

Phase portraits were obtained by numerically integrating the system and analyti-291

cally finding the fixed points. A representative phase portrait that captures the quali-292

tative dynamics is drawn for each of the relevant parameter space regions delimited293

by bifurcation curves given by the parameters of that region. To provide a compre-294

hensive understanding of the various dynamic regimes, we conducted an exploration295

along both local and global bifurcation curves.296

In Fig. 3 we show both the local bifurcation curves and the global ones (including297

the homoclinic bifurcation curve depicted in blue). It is worth mentioning that some298

of the black curves depicting Saddle-Node bifurcations also correspond to global299

bifurcations, since some of them are SNILC.300

So far, we have focused on the qualitative differences observed in the system’s301

dynamics, evaluated in different regions of the ρx × ρy parameter space. However,302

it is important to note that in the vicinity of a bifurcation leading to qualitative303

changes, there exists a spectrum of quantitatively distinct solutions. Specifically,304

when the system is close to a SNILC bifurcation and a simple limit cycle is present,305

the periods of the solutions span a wide range even with small variations in the306

parameters. This is illustrated in Fig. 4, where we observe the variation in periods307

for different parameter values.308

Having completed a comprehensive qualitative analysis of the dynamic regimes309

in the system, we are now poised to delve into the investigation of the effects of310
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10 A. C. Andrada and G. B. Mindlin

Fig. 3 Wilson-Cowan bifurcation map. Lower panel is a zoom of the top panel. The Saddle-Node
bifurcation curves are represented in black, the Hopf bifurcation curves in red and the Homoclinic
bifurcation curves in blue. Phase portraits (in orange) corresponding to the different delimited
regions are represented inside the regions. Qualitatively equal phase portraits (as consequence of
symmetry) and those with 5 fixed points were omitted. It should be noted that, for simplicity, neither
the node-spiral transitions nor the double limit cycle bifurcation has been represented in the map.
Likewise, the parts of the Saddle-Node bifurcation that are also SNILC have not been distinguished,
nor have the subcritical and supercritical parts of the Hopf bifurcation

delayed feedback. By incorporating this additional factor into the problem, we aim311

to gain insights into how it influences the system’s behavior. This next section will312

explore the intriguing interplay between delayed feedback and the existing dynamic313

regimes, shedding light on the complex dynamics that emerge from this interaction.314

4 The Effect of Feedback on Neural Oscillators315

In this section, we introduce feedback into the neural oscillator model, following a316

similar approach as in previous studies [13–15]. By incorporating a non-zero value317

for the feedback parameter K in Eq. (7), the system becomes sensitive to its own318
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The Dynamics of Sensorimotor Integration 11

Fig. 4 Period against ρx for multiple values of μ in Eq. (7) with a = b = c = 10, d = −10, ρy =
−9 and K = 0. Note that solutions’ periods tend to infinity when ρx tends to the critical value for
the SNILC bifurcation ρ′

x ≈ −3.2

past states. To capture this effect computationally, we employ a queue-like structure319

to store the system states from t − τ to t , where τ represents the time delay. This320

structure is updated at each step of the numerical integration, which is performed321

using a fourth-order delay-adapted Runge-Kutta method. Additionally, we include322

an option to consider the state vector from the immediately previous computation in323

consecutive simulations, providing continuity in the analysis.324

For the subsequent analysis, we will fix the non-delay parameters of Eq. (7) as325

described in the caption of Fig. 5, which guarantees the proximity to a SNILC. We326

then proceeded to explore the dynamics as K and τ are varied.327

In the absence of feedback (K = 0), the system exhibits periodic solutions with328

a period duration of 65 ms. To explore the effects of feedback, we employed the329

modified fourth-order Runge-Kutta method discussed earlier to numerically compute330

the trajectories of the system. By integrating the equations over a wide range of331

K and τ values, we obtained the corresponding trajectories and investigated their332

characteristics. To comprehensively analyze the impact of feedback, we explored a333

subset of the K × τ parameter space, where K ranges from 3 to 10 and τ ranges334

from 40 to 70 ms. By doing so, we aim to uncover the emerging complexity in the335

delayed version of the model.336

The incorporation of a delay allows us to retain and analyze the previous states337

of the system in a “queue” structure. With this capability, we can traverse the K × τ338

space in all four directions (ascending and descending values of K and τ , while339

keeping the other parameter constant) and investigate how these variations lead to340

the generation of qualitatively and/or quantitatively different periodic solutions. By341

examining the trajectories obtained for each K and τ combination, we can gain342

insights into the nature and diversity of the system’s dynamics.343
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12 A. C. Andrada and G. B. Mindlin

It is worth noting that the analysis of the solutions is performed disregarding344

any transients that may appear when increasing or decreasing a parameter between345

consecutive integrations. Since the length of the initial condition vector grows for346

consecutive integrations when τ is increasing, the stored states of the system must347

be long enough to avoid running short of stored values for x(t − τ) and y(t − τ).348

At each point in the parameter space grid, we applied an algorithm to calculate the349

periodicity of the solution. This algorithm involved tracking the number of rotations350

in the trajectory until it repeated itself, with a predefined threshold for the difference351

between f (t) and f (t + T ) for multiple values of t , where T represented a candidate352

period duration. To be precise, the algorithm consists in the following steps and can353

be implemented in the desired programming language:354

• A variable rotationCounter is initialized. At each point in the phase plane it grows355

by the value corresponding to the angular velocity measured over the vector field356

divided by 2π .357

• For a given (x, y) time series (a trajectory), we obtain a time series for rotation-358

Counter. Every integer rotationCounter (up to the desired maximum periodicity, in359

our case 8) in the time series becomes a candidate to be the n of the n-periodicity of360

the solution. T is the candidate period duration associated to that rotationCounter.361

• Each of the rotationCounter candidates gets a score proportional to the average of362

the distances of (x(t), y(t)) and (x(t + T ), y(t + T )) for s representative amount363

of times t .364

• The minimum rotationCounter whose score is less than a fixed threshold is365

considered the n-period of the solution. That’s the output of the algorithm.366

• If no integer rotationCounter gets a score below the threshold, the algorithm367

outputs null.368

• Precision can be increased by increasing the number of evaluated points in time369

to compute the distances and/or decreasing the threshold (it must be taken into370

account that decreasing too much the threshold without increasing accordingly371

the numerical precision of the integrator could produce undesired null outputs).372

It must be noted that the classification is purely topological and not temporal. This373

means, for instance, that n-periodic solutions might have very different time periods374

for the same n. It also means that, for example, a 2-periodic solution may correspond375

to a longer time period than a 3-periodic one.376

To visually represent our findings, we assigned integer values to classify the377

periodicity of the solutions at each explored grid coordinate of the parameter space.378

We used a color-coding scheme where unique colors were assigned to integer values379

up to 8. By superimposing the resulting areas from the four plots with transparency,380

we created a composite visualization shown in Fig. 5. White regions indicate cases381

where no periodicity was detected by the algorithm. These regions may correspond382

to higher period, quasiperiodic or chaotic solutions.383

This approach allows us to gain insight into the presence and characteristics of384

periodic solutions across the K × τ parameter space, providing a comprehensive385

view of the system’s harmonic structure that emerges as a consequence of the applied386
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The Dynamics of Sensorimotor Integration 13

Fig. 5 Harmonic bifurcation map in delay-parameters space (K × τ ) with ρx = −2.3, ρy = −9
and μ = 150. Each colored region is linked to a periodic solution of n-periodicity, being n an
integer between 1 and 8. Transparency enables a way to visualize bistable zones since the plot
was constructed by merging the areas of n-periodicity obtained by determining the period of the
solutions of the system when integrated for the K × τ parameter space explored in the four directions
(increasing or decreasing each delay-related parameter). A rich spectrum of subharmonic solutions
is observed. Uncolored regions are those where the solution was not n-periodic for any n ≤ 8, i.e.
higher periods, quasiperiodic or chaotic solutions

feedback. We observe a rich subharmonic structure, meaning that the periods of the387

oscillatory solutions of the system are integer multiples of a fundamental. Values388

below K = 3 and τ = 40 ms are omitted in the plot because there are only period-1389

solutions.390

Figure 5 displays the regions where specific periodic solutions occur and where391

pairs of different n-periodic stable solutions coexist (so transparency allows to iden-392

tify bistable regions as those with two colors). The color-coded map enables the393

identification of adjacent zones and their colors, allowing us to discern the per-394

mitted transitions between periodic solutions and their locations. This plot bears395

resemblance to Arnold’s tongues observed in the study of the circle map [2].396

The presence of multistability, where multiple periodic stable solutions coexist397

for certain parameter combinations, is a prominent feature observed in our results.398

This finding is consistent with previous research conducted on oscillator systems399

with time delay [8]. The identification and characterization of multistability adds to400

our understanding of the complex dynamics exhibited by the delayed version of the401

model.402

The observed increase in complexity and the emergence of rich solutions in our403

model can be attributed solely to the introduction of a simple delay term, represented404

by a linear copy of the value of x at a past time t − τ . No other modifications were405

made to the model. This highlights the profound impact of delayed feedback on the406

dynamics of the system.407
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14 A. C. Andrada and G. B. Mindlin

Since pairs of adjacent areas in which one doubles the periodicity of the other408

are extensively well represented in Fig. 5, we may state that the presence of period-409

doubling bifurcations is a remarkable emergent feature of the system.410

To further explore the effects of delay, it would be interesting for future investi-411

gations to consider the influence of nonlinear delayed terms. Nonlinearities in the412

delay term can introduce additional complexities and potentially lead to even richer413

dynamics.414

It is important to note that the inclusion of a delay term deviates from the princi-415

ples of traditional dynamical systems theory, where a finite set of initial conditions416

determines the unique fate of the system. In the case of a differential equation with417

delays, the problem becomes infinite-dimensional, as it requires a continuous range418

of states as initial condition to integrate the equations accurately. This departure419

from finite-dimensional dynamics adds another layer of complexity to the analysis420

and understanding of the system’s behavior.421

5 Discussion422

The Wilson-Cowan model is widely recognized as a valuable tool for investigating423

the dynamics of neural populations. To gain a comprehensive understanding of this424

model, it is crucial to examine its behavior under various conditions. In this study,425

we specifically delved into the influence of time-delayed feedback on the dynamics426

of the Wilson-Cowan oscillator model. Our primary focus was on the emergence of a427

subharmonic structure in close proximity to a SNILC bifurcation. By exploring this428

aspect, we aimed to shed light on the intricate relationship between delayed feedback429

and the complex dynamics observed in neural systems.430

The inclusion of the simplest feedback term in the Wilson-Cowan model revealed431

a complex subharmonic structure. It has been shown that multiple stable solutions432

exists for some parameter values. To which of the stable solutions the system locks433

is highly dependent of the previous states (and so, of the direction in which the434

parameter space is explored). This is a signature of hysteresis because the state of the435

system is dependent on its history: for two different vectors representing the states436

of the system between times t − τ and t , qualitatively different solutions may arise437

for exactly the same set of parameters.438

In sensory physiology, phase locking refers to the firing of neurons preferentially439

at a certain phase of an amplitude-modulated stimulus. The neural oscillator we are440

modelling is one in which a linear delayed copy of the activity acts as a stimulus441

feeding back the system. The delay-time may be understood as the phase of a driving442

force to which the activity may synchronize either in a 1:1 way or as a subharmonic.443

The implications of our findings extend beyond the realm of neuroscience and can444

be valuable in diverse fields such as physics and robotics. The complex dynamics445

observed in this model open up new possibilities for modeling and understanding446

intricate systems in various domains.447
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The Dynamics of Sensorimotor Integration 15

As a well-defined subharmonic structure is a characteristic pattern observed in448

the behavior of many biological systems, our results hold significant implications449

for both modeling and understanding the underlying mechanisms of these systems.450

By shedding light on the complex dynamics of the Wilson-Cowan model, our study451

may contribute to a better understanding of the behavior of biological systems and452

the potential applications of such models. Experiments to test the predictions could453

provide insights to the mechanisms that are actually involved in the production of454

periodical patterns with such characteristics.455

Many animal behaviors are repeated multiple times over a relatively short period456

of time. It is likely that such repetitive actions are generated by oscillatory patterns of457

neural activity. In particular, birdsong is an animal model which is worth exploring458

under this perspective and has numerous parallels with human speech [3]. In many459

species, as canaries, the generation of the song involves the generation of periodic460

gestures, both respiratory and syringeal [10, 18]. The timing of these gestures is461

believed to be encoded in the HVC telencephalic nucleus. Research has provided462

evidence of glutamatergic and GABAergic synapses within the HVC, suggesting463

their involvement in the timing mechanisms of birdsong generation [11].464

It is also known that HVC works as a relay center for both motor and auditory sig-465

nals in the production and perception of birdsong [1]. It generates motor commands466

involved in song generation. Simultaneously, the HVC integrates auditory feedback467

by processing the auditory signals resulting from the bird’s own vocalizations. The468

relevance of this mechanism varies depending on the degree of development of the469

HVC nucleus and the specific characteristics of each species.470

Given the complex nature of birdsong and the involvement of motor and auditory471

systems, it is reasonable to speculate that some degree of processing delay exists.472

This delay can arise from various factors, including the time required for the song473

to be generated, propagated, and processed by the auditory system [5]. Studies have474

suggested that such delays may be involved in feedback mechanisms that regulate475

and fine-tune the production of birdsong [5].476

Understanding the role of delayed feedback in the neural dynamics of birdsong477

can provide insights into how temporal processing and integration contribute to the478

generation and perception of complex vocalizations. Further experiments would be479

necessary to investigate the potential role of the sub-harmonic generation mecha-480

nisms described here in relation to the observed time durations of different syllable481

gestures.482

In conclusion, this model not only holds significance within the realm of the neu-483

roscience of vocal learning but also unveils a broader perspective on sensorimotor484

integration, a fundamental mechanism that resonates across diverse challenges in485

animal behavior. Our exploration into the modeling of this phenomenon, particu-486

larly in the context of two pivotal bifurcations, Hopf and SNILC, serves as a gateway487

to understanding a spectrum of periodic patterns. By establishing itself as a template,488

this study opens the door to a comprehensive investigation into sensorimotor integra-489

tion, transcending specific examples and offering a lens through which the intricacies490

of this fundamental process can be unravelled in a more universal context. AQ2491

605223_1_En_1_Chapter-online � TYPESET DISK LE � CP Disp.:8/8/2025 Pages: 15 Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f

aguscarpio


aguscarpio
-> "subharmonic"



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16 A. C. Andrada and G. B. Mindlin

References492

1. Amador, A., Margoliash, D.: Auditory Memories and Feedback Processing for Vocal Learning,493

pp. 561–575. (2010)494

2. Arnold, V.I.: Small denominators. I. Mapping the circle onto itself. Izv. Akad. Nauk SSSR Ser.495

Mat. 25, 21–86 (1961)496

3. Doupe, A.J., Kuhl, P.K.: Birdsong and human speech: common themes and mechanisms. Annu.497

Rev. Neurosci. 22(1), 567–631 (1999)498

4. Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow499

oscillation. SIAM J. Appl. Math. 46(2), 233–253 (1986)500

5. Fukushima, M., Margoliash, D.: The effects of delayed auditory feedback revealed by bone501

conduction microphone in adult zebra finches. Sci. Rep. 5, 03 (2015)502

6. Hodgkin, A.L.: The local electric changes associated with repetitive action in a non-medullated503

axon. J. Physiol. 107(2), 165–81 (1948)504

7. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Applied Mathe-505

matical Sciences. Springer, New York (2012)506

8. Kim, S., Park, S.H., Ryu, C.S.: Multistability in coupled oscillator systems with time delay.507

Phys. Rev. Lett. 79, 2911–2914 (1997)508

9. Kuramoto, Y., Nishikawa, I.: Statistical macrodynamics of large dynamical systems. Case of a509

phase transition in oscillator communities. J. Stat. Phys. 49(3), 569–605 (1987)510

10. Long, M., Fee, M.: Using temperature to analyse temporal dynamics in the songbird motor511

pathway. Nature 456, 189–194 (2008)512

11. Mooney, R., Prather, J.: The HVC microcircuit: the synaptic basis for interactions between513

song motor and vocal plasticity pathways. J. Neurosci. Off. J. Soc. Neurosci. 25, 1952–1964514

(2005)515

12. Prescott, S.A.: Excitability: Types I, II, and III, pp. 1–7. Springer New York, New York, NY516

(2013)517

13. Reddy, D., Sen, A., Johnston, G.: Time delay induced death in coupled limit cycle oscillators.518

Phys. Rev. Lett. 80 (1998)519

14. Ramana Reddy, D.V., Sen, A., Johnston, G.L.: Time delay effects on coupled limit cycle520

oscillators at hopf bifurcation. Phys. D Nonlinear Phenom. 129(1), 15–34 (1999)521

15. Ramana Reddy, D.V., Sen, A., Johnston, G.L.: Dynamics of a limit cycle oscillator under time522

delayed linear and nonlinear feedbacks. Phys. D Nonlinear Phenom. 144(3), 335–357 (2000)523

16. Schuster, H.G., Wagner, P.: A model for neuronal oscillations in the visual cortex. Biol. Cybern.524

64(1), 77–82 (1990)525

17. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,526

Chemistry and Engineering. Westview Press (2000)527

18. Suthers, R.A., Margoliash, D.: Motor control of birdsong. Curr. Opin. Neurobiol. 12(6), 684–528

690 (2002)529

19. Wilson, H., Cowan, J.: A mathematical theory of the functional dynamics of cortical and530

thalamic nervous tissue. Kybernetik 13, 55–80 (1973)531

20. Winfree, A.T.: The Geometry of Biological Time. Interdisciplinary Applied Mathematics.532

Springer, New York (2001)533

21. Wittenbach, J.D., Bouchard, K.E., Brainard, M.S., Jin, D.Z.: An adapting auditory-motor feed-534

back loop can contribute to generating vocal repetition. PLOS Comput. Biol. 11(10), 1–29535

(2015)536

22. Zeigler, H.P., Marler, P.: Neuroscience of Birdsong. Cambridge University Press (2008)537

605223_1_En_1_Chapter-online � TYPESET DISK LE � CP Disp.:8/8/2025 Pages: 15 Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f

aguscarpio


aguscarpio
Remove [6] from references

aguscarpio




U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 1

Query Refs. Details Required Author’s response

AQ1 Kindly check and verify that the author name(s) and the identi-
fication of the corresponding author(s) are correctly recognized
and presented in the correct sequence order and spellings, i.e.,
given name, middle name/initial, and family name for the authors.
In addition, please verify that the E-mail addresses and Affilia-
tion(s) of the corresponding author(s) and co-author(s) shown on
the metadata page are valid, and make any necessary amendments
if required.

AQ2 References [6, 12] are given in list but not cited in text. Please cite
in text or delete them from list.

A
ut

ho
r 

Pr
oo

f



Alternative Texts for Your Images, Please Check and Correct them if Required

Page no Fig/Photo Thumbnail Alt-text Description

6 Fig1 Graph showing two functions: 
\( f(\Omega) = \Omega \) as a 
red dashed line and \( 
g(\Omega) = \omega + K 
\sin(\Omega \tau) \) as a black 
wavy line. The x-axis is labeled 
\(\Omega\) and the y-axis 
ranges from 0 to 40. Blue dots 
indicate stable equilibria, and 
blue circles indicate unstable 
equilibrium.

8 Fig2 Flow chart depicting a system 
with two nodes labeled "x" and 
"y." Node "x" is blue, and node 
"y" is red. Arrows indicate 
interactions: "a" loops back to 
"x," "b" connects "x" to "y," "c" 
connects "y" to "x," and "d" 
loops back to "y." Additional 
arrows labeled "ρ_x" and "ρ_y" 
point into nodes "x" and "y," 
respectively. An orange arrow 
labeled "Kτ" loops from "y" 
back to "x."

10 Fig3 X-Y chart displaying two panels 
with plots of \(\rho_x\) on the 
x-axis and \(\rho_y\) on the y-
axis. The top panel shows 
multiple curves in black, red, 
and blue, with orange arrows 
indicating direction and small 
insets of spiral patterns. The 
bottom panel is a zoomed-in 
view of a section from the top 
panel, highlighting detailed 
interactions between the 
curves and additional spiral 
patterns. Key features include 
intersections and directional 
flow, emphasizing dynamic 
relationships between 
\(\rho_x\) and \(\rho_y\).



Page no Fig/Photo Thumbnail Alt-text Description

11 Fig4 Chart showing the relationship 
between period (ms) and \( 
\rho_x \) with four curves 
representing different \( \mu \) 
values: 50 (blue), 100 (green), 
150 (orange), and 200 (red). 
The period decreases as \( 
\rho_x \) increases from -3.2 to 
-2.0.

13 Fig5 Contour map showing 
variations in color representing 
different data regions across a 
plane. The x-axis is labeled "K 
(a.u.)" ranging from 3 to 10, 
and the y-axis is labeled "τ 
(ms)" ranging from 40 to 70. 
The map includes a color 
legend on the right with 
multiple colors, each indicating 
a specific data range. The 
background is predominantly 
red with areas of green, blue, 
and other colors, illustrating 
distinct data zones.


	 The Dynamics of Sensorimotor Integration
	1 Introduction
	2 The Effect of Feedback on Systems Close to Hopf and Saddle-Node-in-Limit-Cycle Bifurcations
	3 The Dynamics of Neural Oscillators
	4 The Effect of Feedback on Neural Oscillators
	5 Discussion
	References




