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Abstract Sensorimotor integration refers to how the sensory feedback originating
from motor actions influences the generation of motor patterns. From a dynamic
perspective, this can be understood as the impact of a term in the equations governing
motor behavior, which is dependent on the variables of the problem in previous
instances. An important motor pattern is the generation of periodic behavior, and in
this work, we will discuss the impact of delayed feedback in a system capable of
displaying these patterns. This question has been addressed when the appearance of
periodic motor patterns is due to a Hopf bifurcation. Here we review those results,
and then move to explore the rich emergent dynamics arising in delayed systems near
a Saddle-Node In Limit Cycle (SNILC) bifurcation. Our results reveal a complex
subharmonic structure consistent with known activity patterns in multiple fields. We
also explore potential applications of this dynamic phenomenon.

1 Introduction

Over the past few decades, extensive research has been conducted to comprehend the
neural control of movement. By employing straightforward computational models to
depict the actions of a single neuron or the collective actions of a neural population, it
became feasible to construct basic networks capable of generating a diverse range of
spatio-temporal patterns. These can be interpreted as the physiological instructions
controlling the biomechanics of some peripheral system.

Certain networks, characterized as dynamical systems, exhibit the ability to yield
diverse solutions contingent on specific global parameters. This capability has proven
instrumental in shedding light on various phenomena, notably contributing to our
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2 A. C. Andrada and G. B. Mindlin

understanding of distinct gaits observed in locomotion. In the 1970s, physiologists
drew inspiration from engineering control systems to gain insight into processes
involving feedback, thereby enhancing the comprehensive description of behavior.

The behavior of an animal, for instance when it is executing a motor plan, emerges
from the intricate interplay among its nervous system, its motor morphological struc-
tures, and the sensory information gathered from its environment. This interaction
operates bidirectionally, as the environment is also influenced by the animal’s behav-
ior. The concept of “sensory feedback” encompasses the mechanism through which
animals perceive and assess the consequences of their actions on the environment.
In parallel, “sensorimotor integration” involves the process by which motor output,
or behavior in general, materializes through the interplay between two information
channels: sensory input processing and motor plan pathways [21].

The research program is simple to articulate, yet its implementation is not with-
out challenges, primarily due to the intricacies involved in deciphering the coding
of sensory information. Within the framework of functionalism in neuroscience, the
nervous system processes sensory input based on its intended purpose and destina-
tion. When the goal is perception, the processing may entail feature extraction and
the amalgamation of inputs from various sensory sources. Conversely, if the sensory
input is employed to guide the generation of motor commands, it must be interpreted
in relation to the present state of the motor system and how it may change the course
of execution of motor plans.

Repetitive sequencing of actions is a prevalent phenomenon in behavioral
sequences, particularly observed in animal vocalizations. Notably, many species
of birds construct their songs through the iterative repetition of specific syllables,
followed by a sequence featuring a distinct syllable. Elementary models elucidating
birdsong production reveal that these reiterated syllables can be produced through
periodic physiological instructions governing respiration and the configuration of the
vocal organ. The generation of different syllables can be achieved by modifying the
relative phases of these instructions or other features such as their periods.

Extensive research has been dedicated to the avian song system, with a consensus
emerging that a specific brain area within the telencephalon, known as HVC (proper
name, formerly stood for high vocal center), plays a pivotal role in temporal pattern
generation. Moreover, it is established that the auditory pathway projects into this
brain region. Consequently, it is reasonable to inquire whether auditory feedback
plays a crucial role in sustaining syllable repetitions in certain bird species. Corrob-
orating this hypothesis, experiments with Bengalese finches indicate that deafening
leads to a reduction in syllable repetitions. For the case of birdsong, the study of a
computational model showed that syllable repeats are initially sustained by auditory
feedback [21]. However, periodic patterns of activity are pervasive in nature and
manifest in a variety of animal behaviors [20, 22]. The hypothesis posits that, in
certain contexts, rhythmic activity emerges from the collective behavior of neural
oscillators, which generate periodic signals driving the animal’s motor systems [11].

A neural oscillator, a simple neural architecture capable of instigating periodic
activity within the brain, comprises a pair of interconnected excitatory and inhibitory
neurons [7]. When a local population of neurons exhibits comparable dynamics and
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The Dynamics of Sensorimotor Integration 3

functionality, extending the neural oscillator model from a pair of neurons to a pair of
populations using mean field theory becomes advantageous [9, 16]. The comprehen-
sion of these oscillators’ dynamics and their interaction with other components of the
nervous system, such as those conveying sensory feedback, is crucial for unraveling
the mechanisms underpinning the generation of periodic behavior. Mathematically,
this endeavor necessitates a thorough review of the impact of incorporating a delayed
function of the variables used to describe the problem in the model elucidating the
origin of the oscillations.

This issue has been previously investigated in [15], where the impact of delayed
feedback on a basic oscillator is explored. This seminal work modeled the oscillator
as the normal form of a Hopf bifurcation, which is a simple representation of how
oscillations arise in nonlinear systems. In a Hopf bifurcation, oscillations emerge
with zero amplitude and a distinct frequency. Building upon this foundation, our
study extends the previous research by examining the effects of delayed feedback
in proximity to global bifurcations. Furthermore, we investigate this problem within
the framework of an interpretable model for neural oscillators.

In computational neuroscience, the Wilson-Cowan model [19] delineates the
dynamics governing interactions among populations of elementary excitatory and
inhibitory model neurons. Originating from the collaborative work of Hugh R. Wil-
son and Jack D. Cowan, this model has found widespread application in neuronal
population modeling, with various adaptations gaining prominence. Notably, the
model holds historical significance for its utilization of phase plane methods and
numerical solutions to elucidate the responses of neuronal populations to stimuli.

A distinctive feature of the Wilson-Cowan model is its depiction of the interplay
between a population that stimulates the neurons it connects to and a population that
inhibits its efferents (the neurons it connects to). As a consequence of this interaction,
a common dynamical outcome is the emergence of oscillations. Oscillations within
a Wilson-Cowan model can emerge not only through local bifurcations like Hopf
bifurcations but also through global bifurcations, exemplified by the Saddle-Node
In Limit Cycle bifurcation (SNILC). In this type of bifurcation, a local Saddle-Node
bifurcation takes place, but since the unstable manifold of the saddle is part of the
stable manifold of the attractor, the disappearance of the fixed points gives rise to a
periodic solution with infinite period at the bifurcation (for this reason, SNIPER i
an alternative name for this bifurcation; it stands for Saddle Node in Infinite PeriodA

Notice that the values of the vector field in the region of the phase space where the I;;;Seabr';”cﬁgite',‘;”

two fixed points collapsed will be close to zero. Therefore, the periodic trajectory [glated to

will be slow (critical slowing down phenomena) in that region of the phase space. &by

i i ibi i 151 TypeIand Type
Consequently, the oscillations exhibit a composite structure, comprising both fast B¢ 20¢ Pe

and slow components. This distinctive feature sets them apart from simple harmonic '
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112

oscillations. Another consequence is that the periodic solutions being born in these
bifurcations contain a rich spectral content.

The richness of the dynamics in the Wilson-Cowan oscillator suggests that to com-
prehend the integration of a sensorimotor effect, translated mathematically through
the inclusion of a delay term, one must delve beyond the impact of such terms
on a simple Hopf oscillator. For this reason, in this chapter, we will scrutinize the
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4 A. C. Andrada and G. B. Mindlin

bifurcations inherent in the dynamics of a Wilson-Cowan oscillator and explore the
repercussions of introducing delayed terms to the model when it is close to a SNILC
bifurcation. By incorporating these delays, our goal is to delve into the potential
dynamics that emerge when the onset of periodic motor control integrates with sen-
sory feedback. The inclusion of delay in this context signifies the cumulative time
required for motor behavior to undergo sensory integration and subsequently feed
back into the motor program.

This chapter is structured as follows: Sect. 2 revisits a study conducted by Ramana
Reddy et al. [15] that investigates the effects of time-delayed linear and nonlinear
feedback on the dynamics of a single Hopf bifurcation oscillator. In Sect.3, we
present a comprehensive analysis of the proposed model, including a phase plane
analysis that examines various dynamical regimes. Furthermore, we provide a com-
plete bifurcation map of the system when the delayed term is omitted. Section4
explores the influence of delayed feedback on the model. We construct a map that
illustrates the range of periodic solutions in a delay-parameter space (a K x t space
where K represents the amplitude of a delayed feedback and 7 its delay-time lag).
Our findings reveal increased complexity due to the introduction of a delay-term
exhibiting period-doubling bifurcations, hysteresis, and phase-locking to a spectrum
of subharmonic solutions. Finally, Sect. 5 summarizes the key findings and implica-
tions of our study. Additionally, we discuss future research directions, including a
biological perspective on oscillatory neural activity and periodic patterns observed
in animal behavior.

2 The Effect of Feedback on Systems Close to Hopf
and Saddle-Node-in-Limit-Cycle Bifurcations

Normal forms are the simplest equations consistent with a linear singularity, where
simple refers to the minimal number of monomial terms in the vector field up to a
given order. For the case of a Hopf bifurcation, the qualitative change in the flow
being the birth of a limit cycle of zero amplitude and finite frequency, the normal
form for a complex variable depending on time Z () reads as follows:

Z(t) = (a+io—|ZOZ®), (D

where a is a real constant and w denotes the frequency at which oscillations arise in
the absence of feedback. For its simplicity, it serves as a widely utilized dynamical
system for representing periodic behavior. In [15], the authors introduce a feedback
term to the system as follows:

Zt) = (a+io—|ZOPZ1) —KZ(t —1), 2)
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The Dynamics of Sensorimotor Integration 5

where K represents the amplification factor of the delayed term, and t corresponds to
the time delay. The delayed feedback term, K Z (¢ — 1), accounts for the contribution
of the system’s activity at time r — t to its behavior at time ¢, weighted by the factor
K. When K = 0, the system exhibits a stable limit cycle with an amplitude of \/a
and an angular frequency of .

By expressing the system in polar coordinates and setting a = 1, we can rewrite
the equations as:

F(t) = [1 —r*(O1r(t) — Kr(t — ) cos[0(t — 7) — 0(1)] 3)

r(t —1)

sin[0(t — 1) — 0(2)]. “4)

Considering solutions of the form Z(¢) = Re'¥ for r > 0, we anticipate solutions
in polar form as r(#) = R and 6(¢) = Q¢, where R and Q2 are real constants. Thus,
we can deduce the mathematical conditions for the amplitude and frequency of the
oscillator in the periodic solution:

R =/1 — K cos(227) (®)]
Q =w+ K sin(Q7) (6)

Graphically, Eq. (6) reveals that the frequencies of the solutions correspond to the
intersection points of the identity function f(2) = Q and g(2) = w + K sin(Q27).
Under specific conditions of w and 7, multiple intersections exist, indicating the
presence of multiple periodic solutions. An example demonstrating this phenomenon
is illustrated in Fig. 1.

Indeed, the inclusion of feedback imposes a significant constraint on the frequen-
cies at which periodic oscillations can exist. This is in stark contrast to the situation
without feedback, where a limit cycle can exist for any value of 2. The introduction
of delayed feedback introduces a condition that restricts the possible frequencies
at which sustained oscillations can occur. This constraint arises from the interplay
between the intrinsic frequency of the system, represented by w, and the influence of
the delayed feedback term. As a result, the system’s dynamics exhibits a more intri-
cate behavior, characterized by a limited range of frequencies that support sustained
oscillations.

In situations where multiple stable solutions coexist for a given parameter set, the
system’s evolution towards a specific stable solution depends on the initial condi-
tion. These initial condition can be conceptualized as a vector with infinitely many
complex elements, representing the system’s states for every ¢ between —t and O (if
we start integrating from ¢ = 0).

Numerical simulations have confirmed the presence of hysteresis phenomena
(dependence of the state of a system on its history) associated with the existence
of multiple stable periodic solutions. Depending on the initial condition, the system
may converge towards one particular stable solution or another, leading to distinct
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6 A. C. Andrada and G. B. Mindlin

) f@=0
9(Q) = w+ Ksin(Qr) sz

e  Stable equilibria -

30 o Unstable equilibrium -

o
w
(]
o

10 15 20 30 35 40
Q

Fig. 1 Periods of rhythmic solutions in Eq. (1) are given by the intersection of f(€2) and g(£2).
In this example, two stable and one unstable solutions exists with parameters w = 15.7, K =7,
=038

exists -> exist

dynamical behaviors and trajectories. This behavior highlights the sensitivity of the
system to its initial state and the rich complexity arising from the coexistence of
multiple stable solutions.

The study of under which conditions a system’s vector field undergoes a topologi-
cal change can be addressed by bifurcation theory. For a two-dimensional dynamical
system described by its associated Jacobian matrix (the matrix of all the system’s
first-order partial derivatives), specific conditions determine the occurrence of the
Saddle-Node and Hopf bifurcations. The Saddle-Node bifurcation condition is given
by D = 0, where D represents the determinant of the Jacobian matrix. When D = 0,
a Saddle-Node bifurcation occurs, resulting in the creation or destruction of a pair
of equilibrium points.

On the other hand, the Hopf bifurcation condition is satisfied when T = 0 and
D > 0, leading to the birth or annihilation of a limit cycle, where T stands for the
trace of the Jacobian matrix. These conditions provide insights into the behavior and
qualitative changes that occur in the system as its parameters are varied, helping to
understand the occurrence of bifurcations and the emergence of different dynamical
regimes.

Unlike the Hopf bifurcation, which typically gives rise to periodic solutions with
a well defined finite frequency, the SNILC bifurcation exhibits a distinct behavior
characterized by the emergence of periodic solutions which are born with infinite
period. This results in a diverse set of periodic behaviors that span a broad range
of time scales [4] for parameters in the vicinity of the bifurcation. This wide range
of periods adds richness and complexity to the system dynamics, offering a broader
repertoire of possible behaviors compared to other bifurcations.

E] 605223_1_En_1_Chapter-online ["] TYPESET [_|DISK [_]LE CP Disp.:8/8/2025 Pages: 15 Layout: T1-Standard



aguscarpio


aguscarpio
exists -> exist


Author Proof

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

The Dynamics of Sensorimotor Integration 7

Notice that the SNILC bifurcation is global in nature. Hence, we will explore the
effect of feedback on a simple and pertinent system of equations that, with minimal
complexity, is able to describe neural oscillations born in SNILC bifurcations.

Now that we know some of the features that usually emerge in delayed feedback
systems, let’s take a step back to gently introduce the Wilson-Cowan neural oscillator
model. In Sect. 3 we present the system and describe it in terms of bifurcation theory
for the ordinary form (i.e. with the delay term multiplied by zero). Then in Sect. 4,
we explore in depth the effects of a delayed copy of the system’s activity feeding
back into itself while varying the delay related parameters. The use of this set of
equations allows a smooth export to the realm of neuroscience, where sensorimotor
integration of major importance.

3 The Dynamics of Neural Oscillators

We start reviewing the solutions of a Wilson-Cowan oscillator, which is a system
designed to describe the dynamics of two interacting populations of neurons: exci-
tatory and inhibitory. Our goal is to modify the model in order to incorporate the
effect of feedback, which can be interpreted as the sensory processing of changes
resulting from the system’s own activity (i.e., sensory feedback). To achieve this, we
introduce a delayed copy of one of the variables as an input to the system:

{fc = ju(=x + S(py + ax — by)) -

¥y =u(=y+S(py+cx —dy+ Kx(t — 1)) "y

The state variables x = x(¢) and y = y(¢) represent the excitatory and inhibitory
neural activities, respectively. The parameter ; governs the intrinsic time scale of
the population’s average firing rate. The sigmoid function S(x) = # captures the
processing of inputs from both populations, weighted by synaptic strength coeffi-
cients a, b, ¢, and d, as well as external stimuli o, and p,. The time-delayed copy
of the excitatory activity x (¢ — t), serves as an input to the inhibitory population at
time ¢. This accounts for the feedback effect on the neural dynamics in our model.
This delayed input is multiplied by a factor K, representing an amplification factor.
Note that the linear copy x (¢t — 7) is the simplest way to introduce delayed feedback
into the system. Figure 2 provides a graphical representation of the described model.

Consider K = 0 (the ordinary non-delayed version of the system). In this case,

Eq. (7) simply reduces to:

®)

X = pu(=x+ S(px +ax — by))
y = pu(=y+Sp, +cx —dy)

This dynamical system serves as a model for the emergence of periodic patterns
in the absence of sensory feedback. The condition for equilibrium is given by both
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8 A. C. Andrada and G. B. Mindlin

Fig. 2 Illustration of the
delayed Wilson-Cowan
model depicting excitatory
(blue circle) and inhibitory
(red circle) populations of
neurons, and their activities
denoted by x and y
respectively. The synaptic
parameters of the model,
denoted by a, b, ¢, and d, as a
well as the input parameters
px and py, are shown.
Additionally, the
delay-related parameters K
and 7 are indicated

K T

derivatives being equal to zero. So, a fixed point defined as P* = (x*, y*) must
satisfy the condition:
x* = S(px +ax — by) ©)
y* =S(py+cx —dy)

Therefore, the Jacobian matrix corresponding to Eq.(8), denoted by J, which
evaluated at the fixed points reads as:

7= —14+aS'(py +ax —by) —bS'(px +ax — by) (10)

- cS'(py+cx —dy) —1—dS'(py+cx—dy) |’

J can be expressed in a more convenient form as shown, addressing the fact that the

derivative of the sigmoid function, §’, is equal to S(1 — S) (full details on [7]):
—14+ax(1—x) —bx(1—x)

J = . 11

[ oy —y)  —1—dy(l—y) (1

The Saddle-Node bifurcation occurs when the determinant of the evaluated Jaco-
bian matrix becomes zero. However, the impact of this bifurcation on the system
depends on factors beyond the mere change in sign of the determinant.

The occurrence of a Saddle-Node bifurcation does not necessarily imply the cre-
ation or destruction of a limit cycle. Determining whether a limit cycle is formed
or destroyed as a result of the bifurcation depends on a comprehensive analysis of
the system’s global behavior, taking into account other components and factors. This
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The Dynamics of Sensorimotor Integration 9

particular case of Saddle-Node bifurcation is referred to as Saddle-Node in Limit
Cycle bifurcation (SNILC).

In this section we describe the bifurcation diagram (a plot where multiple bifur-
cation curves are depicted in a parameter space, in this case the p, x p, space) of the
model for the case of K = 0 and specific parameter values (¢ =b =c =10,d =
—10). These particular parameter values are selected to ensure that the boundaries
of the oscillatory regime in the parameter space correspond to SNILC bifurcation
curves and none of them to Hopf bifurcations.

Phase portraits provide a concise graphical representation of the qualitative behav-
ior of the solutions of a system under specific parameter values [17]. When the system
undergoes a bifurcation as a result of a change of parameters, the corresponding phase
portraits exhibit distinct qualitative characteristics.

In our analysis, we will focus on the following features depicted in the phase
portraits:

e The positions of fixed points

e The presence of closed orbits or limit cycles

e Trajectories of the system, which provide insights into the stability of fixed points
and the direction of flow within the system.

As shown in Fig. 3, the central region of the parameter space displays distinctive
periodic behavior characterized by limit cycle dynamics. This region is enclosed
by SNILC bifurcation curves. In the proximity of the bifurcation, the period of a
solution gradually increases as we approach the bifurcation point. Upon crossing the
SNILC bifurcation, the system transitions into a quiescent regime, where sustained
oscillations cease to exist.

Phase portraits were obtained by numerically integrating the system and analyti-
cally finding the fixed points. A representative phase portrait that captures the quali-
tative dynamics is drawn for each of the relevant parameter space regions delimited
by bifurcation curves given by the parameters of that region. To provide a compre-
hensive understanding of the various dynamic regimes, we conducted an exploration
along both local and global bifurcation curves.

In Fig. 3 we show both the local bifurcation curves and the global ones (including
the homoclinic bifurcation curve depicted in blue). It is worth mentioning that some
of the black curves depicting Saddle-Node bifurcations also correspond to global
bifurcations, since some of them are SNILC.

So far, we have focused on the qualitative differences observed in the system’s
dynamics, evaluated in different regions of the o, x p, parameter space. However,
it is important to note that in the vicinity of a bifurcation leading to qualitative
changes, there exists a spectrum of quantitatively distinct solutions. Specifically,
when the system is close to a SNILC bifurcation and a simple limit cycle is present,
the periods of the solutions span a wide range even with small variations in the
parameters. This is illustrated in Fig.4, where we observe the variation in periods
for different parameter values.

Having completed a comprehensive qualitative analysis of the dynamic regimes
in the system, we are now poised to delve into the investigation of the effects of
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10 A. C. Andrada and G. B. Mindlin

~5.65
~5.70
-5.75
py -—5.80
-5.85
~5.90

-5.95

—-3.16 —-3.14 -3.12 —-3.10 —-3.08 —-3.06 —3.04
Px

Fig. 3 Wilson-Cowan bifurcation map. Lower panel is a zoom of the top panel. The Saddle-Node
bifurcation curves are represented in black, the Hopf bifurcation curves in red and the Homoclinic
bifurcation curves in blue. Phase portraits (in orange) corresponding to the different delimited

regions are represented inside the regions. Qualitatively equal phase portraits (as consequence of ->"as a

symmetry) and those with 5 fixed points were omitted. It should be noted that, for simplicity, neither
the node-spiral transitions nor the double limit cycle bifurcation has been represented in the map.
Likewise, the parts of the Saddle-Node bifurcation that are also SNILC have not been distinguished,
nor have the subcritical and supercritical parts of the Hopf bifurcation

delayed feedback. By incorporating this additional factor into the problem, we aim
to gain insights into how it influences the system’s behavior. This next section will
explore the intriguing interplay between delayed feedback and the existing dynamic
regimes, shedding light on the complex dynamics that emerge from this interaction.

4 The Effect of Feedback on Neural Oscillators

In this section, we introduce feedback into the neural oscillator model, following a
similar approach as in previous studies [13—15]. By incorporating a non-zero value
for the feedback parameter K in Eq.(7), the system becomes sensitive to its own
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Fig. 4 Period against p, for multiple values of u in Eq.(7) witha = b =c =10,d = —-10, p, =
—9 and K = 0. Note that solutions’ periods tend to infinity when p, tends to the critical value for
the SNILC bifurcation p} ~ —3.2

past states. To capture this effect computationally, we employ a queue-like structure
to store the system states from ¢ — 7 to ¢, where 7 represents the time delay. This
structure is updated at each step of the numerical integration, which is performed
using a fourth-order delay-adapted Runge-Kutta method. Additionally, we include
an option to consider the state vector from the immediately previous computation in
consecutive simulations, providing continuity in the analysis.

For the subsequent analysis, we will fix the non-delay parameters of Eq.(7) as
described in the caption of Fig.5, which guarantees the proximity to a SNILC. We
then proceeded to explore the dynamics as K and t are varied.

In the absence of feedback (K = 0), the system exhibits periodic solutions with
a period duration of 65ms. To explore the effects of feedback, we employed the
modified fourth-order Runge-Kutta method discussed earlier to numerically compute
the trajectories of the system. By integrating the equations over a wide range of
K and 7 values, we obtained the corresponding trajectories and investigated their
characteristics. To comprehensively analyze the impact of feedback, we explored a
subset of the K x t parameter space, where K ranges from 3 to 10 and 7 ranges
from 40 to 70 ms. By doing so, we aim to uncover the emerging complexity in the
delayed version of the model.

The incorporation of a delay allows us to retain and analyze the previous states
of the system in a “queue” structure. With this capability, we can traverse the K x t
space in all four directions (ascending and descending values of K and t, while
keeping the other parameter constant) and investigate how these variations lead to
the generation of qualitatively and/or quantitatively different periodic solutions. By
examining the trajectories obtained for each K and t combination, we can gain
insights into the nature and diversity of the system’s dynamics.
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It is worth noting that the analysis of the solutions is performed disregarding
any transients that may appear when increasing or decreasing a parameter between
consecutive integrations. Since the length of the initial condition vector grows for
consecutive integrations when t is increasing, the stored states of the system must
be long enough to avoid running short of stored values for x(r — 7) and y(r — 7).

At each point in the parameter space grid, we applied an algorithm to calculate the
periodicity of the solution. This algorithm involved tracking the number of rotations
in the trajectory until it repeated itself, with a predefined threshold for the difference
between f(¢) and f (¢ + T) for multiple values of ¢, where T represented a candidate
period duration. To be precise, the algorithm consists in the following steps and can
be implemented in the desired programming language:

e A variable rotationCounter is initialized. At each point in the phase plane it grows
by the value corresponding to the angular velocity measured over the vector field
divided by 2.

e For a given (x, y) time series (a trajectory), we obtain a time series for rotation-
Counter. Every integer rotationCounter (up to the desired maximum periodicity, in
our case 8) in the time series becomes a candidate to be the n of the n-periodicity of
the solution. T is the candidate period duration associated to that rotationCounter.

e Each of the rotationCounter candidates gets a score proportional to the average of
the distances of (x(¢), y(¢)) and (x(t 4+ T), y(¢t + T)) for s representative amount
of times ¢.

e The minimum rotationCounter whose score is less than a fixed threshold is
considered the n-period of the solution. That’s the output of the algorithm.

e If no integer rotationCounter gets a score below the threshold, the algorithm
outputs null.

e Precision can be increased by increasing the number of evaluated points in time
to compute the distances and/or decreasing the threshold (it must be taken into
account that decreasing too much the threshold without increasing accordingly
the numerical precision of the integrator could produce undesired null outputs).

It must be noted that the classification is purely topological and not temporal. This
means, for instance, that n-periodic solutions might have very different time periods
for the same n. It also means that, for example, a 2-periodic solution may correspond
to a longer time period than a 3-periodic one.

To visually represent our findings, we assigned integer values to classify the
periodicity of the solutions at each explored grid coordinate of the parameter space.
We used a color-coding scheme where unique colors were assigned to integer values
up to 8. By superimposing the resulting areas from the four plots with transparency,
we created a composite visualization shown in Fig.5. White regions indicate cases
where no periodicity was detected by the algorithm. These regions may correspond
to higher period, quasiperiodic or chaotic solutions.

This approach allows us to gain insight into the presence and characteristics of
periodic solutions across the K x T parameter space, providing a comprehensive
view of the system’s harmonic structure that emerges as a consequence of the applied
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Fig. 5 Harmonic bifurcation map in delay-parameters space (K x t) with py = —=2.3, py, = =9

and p = 150. Each colored region is linked to a periodic solution of n-periodicity, being n an
integer between 1 and 8. Transparency enables a way to visualize bistable zones since the plot
was constructed by merging the areas of n-periodicity obtained by determining the period of the
solutions of the system when integrated for the K x t parameter space explored in the four directions
(increasing or decreasing each delay-related parameter). A rich spectrum of subharmonic solutions
is observed. Uncolored regions are those where the solution was not n-periodic for any n < 8, i.e.
higher periods, quasiperiodic or chaotic solutions

feedback. We observe a rich subharmonic structure, meaning that the periods of the
oscillatory solutions of the system are integer multiples of a fundamental. Values
below K = 3 and t = 40ms are omitted in the plot because there are only period-1
solutions.

Figure 5 displays the regions where specific periodic solutions occur and where
pairs of different n-periodic stable solutions coexist (so transparency allows to iden-
tify bistable regions as those with two colors). The color-coded map enables the
identification of adjacent zones and their colors, allowing us to discern the per-
mitted transitions between periodic solutions and their locations. This plot bears
resemblance to Arnold’s tongues observed in the study of the circle map [2].

The presence of multistability, where multiple periodic stable solutions coexist
for certain parameter combinations, is a prominent feature observed in our results.
This finding is consistent with previous research conducted on oscillator systems
with time delay [8]. The identification and characterization of multistability adds to
our understanding of the complex dynamics exhibited by the delayed version of the
model.

The observed increase in complexity and the emergence of rich solutions in our
model can be attributed solely to the introduction of a simple delay term, represented
by a linear copy of the value of x at a past time # — t. No other modifications were
made to the model. This highlights the profound impact of delayed feedback on the
dynamics of the system.
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Since pairs of adjacent areas in which one doubles the periodicity of the other
are extensively well represented in Fig. 5, we may state that the presence of period-
doubling bifurcations is a remarkable emergent feature of the system.

To further explore the effects of delay, it would be interesting for future investi-
gations to consider the influence of nonlinear delayed terms. Nonlinearities in the
delay term can introduce additional complexities and potentially lead to even richer
dynamics.

It is important to note that the inclusion of a delay term deviates from the princi-
ples of traditional dynamical systems theory, where a finite set of initial conditions
determines the unique fate of the system. In the case of a differential equation with
delays, the problem becomes infinite-dimensional, as it requires a continuous range
of states as initial condition to integrate the equations accurately. This departure
from finite-dimensional dynamics adds another layer of complexity to the analysis
and understanding of the system’s behavior.

5 Discussion

The Wilson-Cowan model is widely recognized as a valuable tool for investigating
the dynamics of neural populations. To gain a comprehensive understanding of this
model, it is crucial to examine its behavior under various conditions. In this study,
we specifically delved into the influence of time-delayed feedback on the dynamics
of the Wilson-Cowan oscillator model. Our primary focus was on the emergence of a
subharmonic structure in close proximity to a SNILC bifurcation. By exploring this
aspect, we aimed to shed light on the intricate relationship between delayed feedback
and the complex dynamics observed in neural systems.

The inclusion of the simplest feedback term in the Wilson-Cowan model revealed
a complex subharmonic structure. It has been shown that multiple stable solutions
exists for some parameter values. To which of the stable solutions the system locks
is highly dependent of the previous states (and so, of the direction in which the
parameter space is explored). This is a signature of hysteresis because the state of the
system is dependent on its history: for two different vectors representing the states
of the system between times ¢ — T and ¢, qualitatively different solutions may arise
for exactly the same set of parameters.

In sensory physiology, phase locking refers to the firing of neurons preferentially
at a certain phase of an amplitude-modulated stimulus. The neural oscillator we are
modelling is one in which a linear delayed copy of the activity acts as a stimulus
feeding back the system. The delay-time may be understood as the phase of a driving
force to which the activity may synchronize either in a 1:1 way or as a subharmonic.

The implications of our findings extend beyond the realm of neuroscience and can
be valuable in diverse fields such as physics and robotics. The complex dynamics
observed in this model open up new possibilities for modeling and understanding
intricate systems in various domains.
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As a well-defined subharmonic structure is a characteristic pattern observed in
the behavior of many biological systems, our results hold significant implications
for both modeling and understanding the underlying mechanisms of these systems.
By shedding light on the complex dynamics of the Wilson-Cowan model, our study
may contribute to a better understanding of the behavior of biological systems and
the potential applications of such models. Experiments to test the predictions could
provide insights to the mechanisms that are actually involved in the production of
periodical patterns with such characteristics.

Many animal behaviors are repeated multiple times over a relatively short period
of time. It is likely that such repetitive actions are generated by oscillatory patterns of
neural activity. In particular, birdsong is an animal model which is worth exploring
under this perspective and has numerous parallels with human speech [3]. In many
species, as canaries, the generation of the song involves the generation of periodic
gestures, both respiratory and syringeal [10, 18]. The timing of these gestures is
believed to be encoded in the HVC telencephalic nucleus. Research has provided
evidence of glutamatergic and GABAergic synapses within the HVC, suggesting
their involvement in the timing mechanisms of birdsong generation [11].

It is also known that HVC works as a relay center for both motor and auditory sig-
nals in the production and perception of birdsong [1]. It generates motor commands
involved in song generation. Simultaneously, the HVC integrates auditory feedback
by processing the auditory signals resulting from the bird’s own vocalizations. The
relevance of this mechanism varies depending on the degree of development of the
HVC nucleus and the specific characteristics of each species.

Given the complex nature of birdsong and the involvement of motor and auditory
systems, it is reasonable to speculate that some degree of processing delay exists.
This delay can arise from various factors, including the time required for the song
to be generated, propagated, and processed by the auditory system [5]. Studies have
suggested that such delays may be involved in feedback mechanisms that regulate
and fine-tune the production of birdsong [5].

Understanding the role of delayed feedback in the neural dynamics of birdsong
can provide insights into how temporal processing and integration contribute to the
generation and perception of complex vocalizations. Further experiments would be
necessary to investigate the potential role of the sub-harmonic generation mecha-
nisms described here in relation to the observed time durations of different syllable
gestures.

In conclusion, this model not only holds significance within the realm of the neu-
roscience of vocal learning but also unveils a broader perspective on sensorimotor
integration, a fundamental mechanism that resonates across diverse challenges in
animal behavior. Our exploration into the modeling of this phenomenon, particu-
larly in the context of two pivotal bifurcations, Hopf and SNILC, serves as a gateway
to understanding a spectrum of periodic patterns. By establishing itself as a template,
this study opens the door to a comprehensive investigation into sensorimotor integra-
tion, transcending specific examples and offering a lens through which the intricacies
of this fundamental process can be unravelled in a more universal context.
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